摘要
【目的】对25个茶树品种春、夏、秋季的光合性能进行评价。【方法】采用Li-6400光合系统测定不同茶树春、夏、秋季新梢叶片的光合参数并予以统计分析。【结果】因子分析提取的2个因子可以概括81.16%的光合参数信息,因子1主要受净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)及羧化率(CE)的影响,因子2主要受水分利用率(WUE)和蒸腾速率(Tr)的影响;春季,铁观音、菊花春的光合因子综合得分较高;夏季,浙农113和中茶302得分较高;秋季,浙农113和巴渝特早得分较高。系统聚类将所有材料分为2类,其中大部分茶树夏季的叶片为一类,具有较高的Pn和WUE;春、秋季的所有茶树叶片及黔湄502等6个茶树品种的夏季叶片为一类,具有较高的Pn、Gs、Ci和Tr,但WUE较低。【结论】制定栽培管理措施时应因时因品种制宜。
[Purpose]Photosynthetic performance of 25 tea cultivars in different seasons would be evaluated.[Method]Photosynthetic parameters of different tea cultivars at spring,summer and autumn were measured by an intelligent portable photosynthesis system(Li-6400X),and the data would be analyzed.[Result]The first two factors accounted for 81.16%of the total variation.Factor 1 was mainly affected by the levels of net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci)and carboxylation efficiency(CE),factor 2 was mainly affected by the levels of water use efficiency(WUE)and transpiration rate(Tr).Tieguanyin and Juhuachun had the higher factor score in spring,Zhenong 113 and Zhongcha 302 had the higher factor score in summer,in addition,Zhenong 113 and Bayu Tezao had the higher factor score in autumn.All the cultivars were classified into 2 types,tea leaves of most of the cultivars in summer were A type,which showed the better Pn and WUE levels,and the leaves of all the tea cultivars in spring and autumn and the leaves of Qianmei 502,Nanjiang Daye,Wuniuzao,Meizan,Mengshan 11 and Chuanmu 217 in summer were the B type,which shows the better Pn,Gs,Ci and Tr levels,but the lower WUE level.[Conclusion]The cultivation management measures of tea plant should be formulated according the cultivars and season.
作者
邹瑶
许燕
陈盛相
谭礼强
唐茜
ZOU Yao;XU Yan;CHEN Shengxiang;TAN Liqiang;TANG Qian(College of Horticulture,Sichuan Agricultural University,Chengdu 611130,China)
出处
《云南农业大学学报(自然科学版)》
CSCD
北大核心
2019年第1期89-96,共8页
Journal of Yunnan Agricultural University:Natural Science
基金
四川省科技厅科技支撑项目(2014NZ0034)
关键词
茶树
品种
光合作用
因子分析
聚类分析
tea plant
cultivar
photosynthesis
factor analysis
cluster analysis