期刊文献+

基于超球优化支持向量数据描述的滚动轴承故障检测 被引量:7

Rolling bearing fault detection based on the hypersphere optimization support vector data description
下载PDF
导出
摘要 在仅有轴承正常运行数据的小样本情况下,支持向量数据描述(SVDD)能通过对多维特征的融合实现滚动轴承的故障检测与状态评估,但特征向量空间分布的复杂程度会直接影响SVDD的效果。为此,提出了一种基于超球优化支持向量数据描述的滚动轴承故障检测方法,通过超球优化改善特征向量的空间分布以降低数据描述任务的难度,进而使得超球优化SVDD能更有效地识别出滚动轴承故障。多组试验表明:在不同转速、不同测点、不同类型的滚动轴承故障下,超球优化SVDD比传统的SVDD方法效果更优。 In the case of small sample size problems where only the operating data of healthy rolling bearings are available,the support vector data description(SVDD)method was applied to the rolling bearings fault detection and condition evaluation commendably by fusing multidimensional features.However,the complexity of the feature vector space distribution will directly affects the results of SVDD.Aiming at this,a novel rolling bearing fault detection method called hyper-sphere optimization support vector data description(hoSVDD)was proposed.The spatial distribution of feature vectors was improved by the hyper-sphere optimization so that the difficulty in data description was reduced.Hence,the hoSVDD is more suitable for rolling bearing fault detection.Multi-group rolling bearing tests show that:under the conditions of different speeds,different test points,and different types of rolling bearings faults,the proposed hoSVDD performs better than the traditional SVDD method.
作者 林桐 陈果 滕春禹 王云 欧阳文理 LIN Tong;CHEN Guo;TENG Chunyu;WANG Yun;OUYANG Wenli(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Avic China Aero-Polytechnology Establishment,Beijing 100028,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第2期204-210,225,共8页 Journal of Vibration and Shock
关键词 支持向量数据描述(SVDD) 滚动轴承 超球优化 特征融合 故障检测 特征变换 support vector data description(SVDD) rolling bearing hypersphere optimization feature fusion fault detection feature transformation
  • 相关文献

参考文献12

二级参考文献140

共引文献359

同被引文献73

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部