期刊文献+

基于块稀疏贝叶斯学习的多目标动态荧光分子重建

Multi-objective dynamic fluorescence molecular reconstruction based on block sparse Bayesian learning
下载PDF
导出
摘要 针对基于范数优化的多目标动态荧光分子重建稀疏性不足、定位精度低的问题,本研究提出了基于块稀疏贝叶斯学习的重建方法。该方法利用多观测动态荧光信号共享相同稀疏结构的特点,充分挖掘了信号的时空相关性信息和分块稀疏特性,将多观测模型联合稀疏重构问题转化为块稀疏贝叶斯学习问题,通过稀疏贝叶斯框架下的相关向量机稀疏学习模型获取稀疏解。实验结果表明,本研究算法相较于传统压缩感知算法具有更高的稀疏度和定位精度。 Aiming at the problem of insufficient sparsity and low positioning accuracy of multi-objective dynamic fluorescence molecular reconstruction based on norm optimization,a reconstruction method based on block sparse Bayesian learning was proposed.The characteristics of multi-observation dynamic fluorescence signals was utilized to share the same sparse structure,the spatiotemporal correlation information and the sparseness of the block were fully exploited,and the multi-observation model and the sparse reconstruction problem into block sparse Bayesian learning problems were transformed.The sparse learning model of relevance vector machine under sparse Bayesian framework was adopted to obtain sparse solutions.Experimental results show that the proposed algorithm has higher sparsity and positioning accuracy than the traditional compressed sensing algorithm.
作者 臧青杨 陈春晓 杨俊豪 李东升 ZANG Qingyang;CHEN Chunxiao;YANG Junhao;LI Dongsheng(Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《生物医学工程研究》 2018年第4期454-459,464,共7页 Journal Of Biomedical Engineering Research
关键词 稀疏贝叶斯学习 压缩感知 动态荧光 三维重建 多观测向量 块稀疏模型 Sparse Bayesian learning Compression perception Dynamic fluorescent molecule Three-dimensional reconstruction Multiple measurement vectors Block sparse model
  • 相关文献

参考文献6

二级参考文献58

  • 1Donoho D L. Compressed sensing. IEEE Trans. on Infor- mation Theory [ J ]. 2006,52 (4) : 1289-1306. 被引量:1
  • 2Candes E, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. on Information Theory ,2006,52 ( 2 ) :489-509. 被引量:1
  • 3Starek J L, Murtagh F, Fadili J M. Sparse Image and Sig- nal Processing : Wavelets, Curvelets, Morphological Diver- sity[ M]. New York: Cambridge University Press,2010. 被引量:1
  • 4Cotter S F, Rao B D, Engan K, Kreutz-Delgado K. Sparse solutions to linear inverse problems with multiple measure- ment vectors [ J ]. IEEE Trans. Signal Process. ,2005,53 (7) :2477-2488. 被引量:1
  • 5Duarte M F, Eldar Y C. Structured Compressed Sensing: From Theory to Applications [ J ]. IEEE Trans. Signal Process. , 2011,59 ( 9 ) :4053- 4085. 被引量:1
  • 6Eldar Y C, Rauhut H. Average case analysis of muhichan- nel sparse recovery using convex relaxation [ J ]. IEEE Trans. on Information Theory,2010,56( 1 ) :505-519. 被引量:1
  • 7Tang G, Nehorai A. Performance analysis for sparse sup- port recovery [ J ]. IEEE Trans. on Information Theory, 2010,56(3) :1383-1399. 被引量:1
  • 8Zhang Z L, Rao B D. Sparse Signal Recovery with Tem- porally Correlated Source Vectors Using Sparse Bayesian Learning[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5 ( 5 ) :912-926. 被引量:1
  • 9Chen J, Huo X. Theoretical results on sparse representa- tions of multiple-measurement vectors [ J ]. IEEE Trans. Signal Process. ,2006,54 (12) :4634- 4643. 被引量:1
  • 10Tropp J A, Gilbert A C, Strauss M J. Algorithms for sim- ultaneous sparse approximation. Part I: Greedy pursuit [J]. Signal Process. ,2006,86(4) :572-588. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部