摘要
采煤机是现在综合机械化采煤中重要的机械,工作效率和其运动参数有着极大关系,也是采煤机优化的重点。通过结合采煤机负载模型建立BP神经网络预测程序,得出使单位时间内落煤量最大的设置参数,不同截割阻抗条件下,最优牵引速度和滚筒转速值组合。该分析为井下采煤机操作提供一定的技术参考。
As an important equipment in modern comprehensive mechanized coal mining,whose work efficiency effects its motion parameters greatly.BP neural network prediction program was set up based on shearer load model,maximum setting parameter was got in unit time,combination of optimal traction speed and drum speed was got under different cutting impedance conditions,providing technical reference for underground mining machine operation.
作者
闫国嘉
Yan Guojia(Du’erping Mine,Xishan Coal and Power Group,Taiyuan 030022,China)
出处
《煤炭与化工》
CAS
2018年第11期90-92,95,共4页
Coal and Chemical Industry
关键词
采煤机
神经网络
参数优化
mining machine
neural network
parameter optimization