期刊文献+

采用PSR和客观相似性的高置信度跟踪 被引量:5

High-confidence correlation tracking algorithm based on PSR and objective similarity
下载PDF
导出
摘要 针对相关滤波类跟踪算法难以解决的过度形变和目标被遮挡问题,提出了一种融合改进均方峰值旁瓣和客观相似性度量的高置信度跟踪算法-HCF。基于核相关滤波跟踪算法,结合传统相关运算的峰值旁瓣比与感知哈希算法客观度量所跟目标,对遮挡和形变等复杂情况进行高置信度判断,进而自适应的选择模型更新率,克服模型漂移问题;另外,利用尺度池算法解决跟踪中的尺度估计问题,进一步提高了算法的稳健性。通过OTB-2015数据集测试表明:提出的HCF算法能精准判别出由于遮挡形变等情况导致的无效跟踪,相比于当前主流的鲁棒性跟踪算法,具有更优秀的性能和表现。本文的创新工作为跟踪领域中的目标准确度判别问题提供了新的思路。 To prevent over-deformation and to solve occlusion problems that are difficult to solve for correlated filtering tracking algorithms in the tracking field,an improved multiscale target tracking algorithm based on PSR and objective similarity was proposed in this paper.The proposed method combined a traditional correlation operation,peak side lobe ratio,with a perceptual hashing algorithm to tackle problems such as target occlusion,over deformation,and other complex scene judgments.Experimental results using the OTB-2015 demonstrate proposed algorithm's reliability and integrity of the target trajectory.The accuracy and robustness of our algorithm is better than that of Kernelized Correlation Filter(KCF)tracking algorithms.This paper presents a novel idea for occlusion detection in the target tracking field.
作者 宋华军 于玮 王芮 SONG Hua-jun;YU WEI;WANG Rui((East China),Qingdao 266580,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2018年第12期3067-3078,共12页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61602517) 中央高校基本科研业务费专项资金资助项目(No.18CX02109A)
关键词 计算机视觉 目标跟踪 准确度判别 抗遮挡 computer vision target tracking algorithm accuracy judgment anti occlusion
  • 相关文献

参考文献5

二级参考文献40

  • 1史泽林,王俊卿,黄莎白.复杂场景下的变形目标跟踪[J].光电工程,2005,32(1):31-35. 被引量:4
  • 2YILMAZ A, JAVED O, SHAH M. Object track-ing: a survey[J]. ACM Computin; Surveys , 2006 : 38(4):l-45. 被引量:1
  • 3JEPSON A, FLEET D, EL-MARAGHI T. Robust online appearance models for visual tracking [J].IEEE Transactions on Pattern Analysis and Ma chine Intelligence, 2003, 25(10): 1296-1311. 被引量:1
  • 4ADAM A, RIVLIN E and SHIMSHONI I. Robust fragments-based tracking using the integral histo- gram[J]. IE1ZE Conference on Computer Vision and Pattern Recognition, 2006 : 798-805. 被引量:1
  • 5ROSS D, LIMJ, LINR, etal.. Incrementa]learn- ing for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3) .. 125- 141. 被引量:1
  • 6BOLME D S, BEVERIDGE J R, DRAPER I3 A, et al.. Visual object tracking using adaptive correla tion filters [C]. 23rd IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), 2010,13-18. 被引量:1
  • 7KALAI. Z, MIKOLAJCZYK K, MATAS J. Track- ing-learning-detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 43 (7):1409 1422. 被引量:1
  • 8HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of track ing-by-detection with kernels[C]. European Con- f erence on Computer Vision, 2012:702-715. 被引量:1
  • 9DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes {or real-time visual track- ing[C]. 27th IEEE Conference on Computer Vi- sion and Pattern Recognition ( CVPR) , 2014: 23- 28. 被引量:1
  • 10ZHANG K H, ZHANG L, YANG M H. Fast compressive tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10) ..2002-2015. 被引量:1

共引文献196

同被引文献23

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部