期刊文献+

在线低秩表示的目标跟踪算法 被引量:4

Object tracking via online low rank representation
下载PDF
导出
摘要 针对传统的基于生成模式的跟踪方法对噪声及遮挡问题比较敏感,导致跟踪结果失败的问题,提出了以前几帧的跟踪结果作为观测矩阵,采用鲁棒的主元成分分析模型求解观测模型的低秩特征.当新的视频流到来时,不是把所有的跟踪结果矩阵作为观测矩阵.并提出了新的增量鲁棒的主元成分分析模型,采用增广拉格朗日算法求解新矩阵的低秩特征,并以此低秩矩阵在贝叶斯框架下建立跟踪模型,用恢复的低秩特征更新字典矩阵.将文中方法与其他6种跟踪算法在8种跟踪视频上进行跟踪对比.实验结果表明,所提出的方法具有较低的像素中心位置误差和较高的重叠率. Object tracking is an active research topic in computer vision. The traditional tracking methods based on the generative model are sensitive to noise and occlusion, which leads to the failure of tracking results. In order to solve this problem, the tracking results of the first few frames are used as the observation matrix, and the low rank features of the observation model are solved by the the RPCA model. When the new video streams come, a new incremental RPCA is proposed to compute the new observation matrix by the augmented Lagrangian algorithm. The tracking model is established in the Bayesian framework, and the dictionary matrix is updated with the low rank feature. We have tested the proposed algorithm and six state-of-the-art approaches on eight publicly available sequences. Experimental results show that the proposed method has a lower pixel center position error and a higher overlap ratio.
作者 王海军 葛红娟 张圣燕 WANG Haijun GE Hongjuan ZHANG Shengyan(College of Civil Aviation, Nanjing Univ. of Aeronautics and Astronautics, Nanjing 210016, China Key Lab. of Aviation Information Technology in Univ. of Shandong, Binzhou Univ., Binzhou 256603, China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第5期98-104,共7页 Journal of Xidian University
基金 山东省自然科学基金资助项目(ZR2015FL009) 滨州市科技发展计划资助项目(2013ZC0103) 滨州学院科研基金资助项目(BZXYG1524)
关键词 目标跟踪 低秩特征 鲁棒的主成分分析模型 字典矩阵 object tracking low rank feature RPCA model dictionary matrix
  • 相关文献

参考文献3

二级参考文献44

  • 1Wu Yi,Lim J W,Yang M H.Online Object Tracking:a Benchmark[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2013:2411-2418. 被引量:1
  • 2SanMiguel J C,Cavallaro A,Martínez J M.Adaptive Online Performance Evaluation of Video Trackers[J].IEEE Transactions on Image Processing,2012,21(5):2812-2823. 被引量:1
  • 3Salti S,Cavallaro A,Stefano L D.Adaptive Appearance Modeling for Video Tracking:Survey and Evaluation[J].IEEE Transactions on Image Processing,2012,21(10):4334-4348. 被引量:1
  • 4Porikli F,Yilmaz A.Object Detection and Tracking[J].Studies on Computational Intelligence,2012,409:3-41. 被引量:1
  • 5Zhang Shengping,Yao Hongxun,Sun Xin,et al.Sparse Coding Based Visual Tracking:Review and Experimental Comparison[J].Pattern Recognition,2013,46(7):1772-1788. 被引量:1
  • 6Mei Xue,Ling Haibin.Robust Visual Tracking Using L1 Minimization[C]//IEEE 12th International Conference on Computer Vision.Piscataway:IEEE,2009:1436-1443. 被引量:1
  • 7Zhang Kaihua,Zhang Lei,Yang M H.Real-time Compressive Tracking[C]//Lecture Notes in Computer Science.Berlin:Springer-Verlag,2012:864-877. 被引量:1
  • 8Hartley R,Zisserman A.Multiple View Gometry in Computer Vision[M].Cambridge:Cambridge University,2000. 被引量:1
  • 9Ross D A,Lim J W,Lin R S,et al.Incremental Learning for Robust Visual Tracking[J].International Journal of Computer Vision,2008,77(1-3):125-141. 被引量:1
  • 10Adam A,Rivlin E,Shimshoni R I.Robust Fragments-based Tracking Using the Integral Histogram[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2006:798-805. 被引量:1

共引文献10

同被引文献15

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部