摘要
令H,K是£上无限维Hilbert空间,A,B分别是H和K上的因子von Neumann代数。结果显示:每一个从A到B完全保Jordan零积的满射都是线性同构或共轭线性同构的非零常数倍。
Let H,K be infinite dimensional complex Hilbert spaces and A,B be factor von Neumann algebras on H and K,respectively. It is shown that every surjective map completely preserving Jordan zero product from A to B is a nonzero scalar multiple of either a linear isomorphism or a conjugate linear isomorphism.
作者
张瑜
黄丽
赵红利
ZHANG Yu;HUANG Li;ZHAO Hong-Li(School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处
《太原科技大学学报》
2019年第1期77-80,共4页
Journal of Taiyuan University of Science and Technology
基金
国家自然科学基金青年基金项目(11501401)