期刊文献+

基于拉曼光谱的天然气主要组分定量分析 被引量:30

Quantitative Analysis of Main Components of Natural Gas Based on Raman Spectroscopy
下载PDF
导出
摘要 经脱硫脱水处理后的天然气组分包括甲烷、乙烷、丙烷、二氧化碳、氮气、氢气、一氧化碳以及C_4以上(记为C_4^+)的未知烷烃成分等物质,其中前7种组分为天然气中的主要组分,占天然气含量的90%以上。在运用已有的拉曼光谱分析方法对天然气成分进行分析时,少量的C_4^+未知烷烃组分会对结果造成较大的影响。本研究提出了一种新的拉曼分析方法,由拉曼光谱自动分解算法和定量分析模型组成。首先,基于拉曼光谱的线型叠加性,利用非线性最小二乘法将天然气拉曼光谱分解为7种纯物质组分的拉曼光谱分量和若干个洛伦兹谱峰之和的形式,其中C_4^+未知烷烃成分的含量是用各种烷烃分子共有的CH变形振动峰反映。然后,利用训练样本来建立其它物质相对于甲烷的特征峰面积和对应的浓度之间的模型。相比于已有的拉曼分析方法,本算法克服了含有C_4^+未知烷烃成分的天然气组分的检测难题,且具有较好的稳定性和准确性。实验结果表明,此方法对甲烷、乙烷、丙烷、二氧化碳、氮气、氢气和一氧化碳的最大绝对测量误差分别为0.57%、0.37%、0.21%、0.07%、0.18%、0.04%和0.13%;与气相色谱检测结果的相关系数也分别达到了0.997、0.986、0.991、0.998、0.993、1.000、0.995和0.982。 After desulfurization and dehydration treatment,natural gas is composed of methane,ethane,propane,carbon dioxide,nitrogen,hydrogen,carbon monoxide and unknown alkane components of C 4 or more(denoted as C 4+).The sum of the content of first seven components is more than 90%of natural gas.When the existing Raman spectral analysis methods are applied to analyze the natural gas composition,a small amount of unknown alkane components C 4+will have a greater impact on the analysis precision.On the basis of this,a novel Raman analysis method which consists of a spectral automatic decomposition algorithm and a quantitative analysis model has been developed.Based on a linear additivity of Raman spectra,the Raman spectrum of a natural gas sample can be decomposed into the sum of the Raman spectra of pure constituents and several Lorentz peaks by a nonlinear least-square optimization algorithm.The content of the unknown alkane component C 4+can be described as the area of C H deformation vibration peak common for most alkane molecules.Samples of the training set are used to establish the model between Raman characteristic peak area and corresponding concentration for each component relative to methane.Compared with the existing Raman analysis methods,the new method solves the issue of analyzing natural gas containing unknown alkane components and has good stability and accuracy.Experiments show that the maximum absolute errors of this algorithm for methane,ethane,propane,carbon dioxide,nitrogen,hydrogen,and carbon monoxide respectively reach 0.57%,0.37%,0.21%,0.07%,0.18%,0.04%,0.13%,and the correlation coefficient of gas chromatographic results also reaches 0.997,0.986,0.991,0.998,0.993,1.000,0.995,0.982,respectively.
作者 高颖 戴连奎 朱华东 陈昀亮 周理 GAO Ying;DAI Lian-Kui;ZHU Hua-Dong;CHEN Yun-Liang;ZHOU Li(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;Research Institute of Natural Gas Technology,PetroChina Southwest Oil&Gasfield Company,Chengdu 610213,China)
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2019年第1期67-76,191-192,共11页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金项目(No.U1609213)资助~~
关键词 天然气 拉曼光谱 洛伦兹谱峰 非线性最小二乘法 光谱分解 Natural gas Raman spectroscopy Lorentz peak Nonlinear least square Spectral decomposition
  • 相关文献

参考文献5

二级参考文献92

  • 1高小玲,巴特勒 J S.应用拉曼光谱法进行定量分析的几个关键性技术问题[J].分析试验室,1995,14(4):52-56. 被引量:9
  • 2谢振华,许录平,倪广仁,王岩.基于一维选择线谱的脉冲星辐射脉冲信号辨识[J].红外与毫米波学报,2007,26(3):187-190. 被引量:11
  • 3MAIMAN T H.Stimulated optical radiation in ruby[J].Na- ture, 1960,187 : 493-494. 被引量:1
  • 4WEINBERG Z A. Charge coupled device: US Patent 3656011[P].1972-04-11. 被引量:1
  • 5STROMMEN D P, NAKAMOTO K. Resonance Raman spectroscopy[J].Journal of Chemical Education, 1977,54 (8) :474. 被引量:1
  • 6FLEISCHMANN M, HENDRA P, MCQUILLAN A. Ra- man spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974,26 (2) : 163-166. 被引量:1
  • 7BORMAN S A.Nonlinear Raman spectroscopy[J].Analyti- cal Chemistry, 1982,54(9) :1021A-1028A. 被引量:1
  • 8HIRSCHFELD T, CHASE B. FT-Raman spectroscopy: Development and justification [J]. Applied Spectroscopy, 1986,40(2), 133-137. 被引量:1
  • 9DILLER D E, CHANG R F. Composition of mixtures of natural gas components determined by Raman spectrome try[J].Applied Spectroscopy,1980,34(4) :411-414. 被引量:1
  • 10HANSEN S B, BERG R W, STENBY E H. High-pres- sure measuring cell for Raman spectroscopic studies of natural gas[J].Applied Spectroscopy, 2001,55 (1) : 55-60. 被引量:1

共引文献51

同被引文献359

引证文献30

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部