期刊文献+

压缩感知图像的块子带自适应稀疏表示规则化重构 被引量:4

Image Reconstruction Regularized by Patch Bandwise Adaptive Sparse Representation for Compressive Sensing
下载PDF
导出
摘要 针对自然图像信号的非平稳特性和不同图像块的变换域系数的分布差异较大,基于分块图像子带自适应稀疏表示规则化,提出了一种新的压缩感知图像重构方法.先利用非局部相似块组估计每个分块图像变换域各子带系数的均值和标准差,再将图像块各子带系数进行去均值并关于标准差归一化,最后将去均值归一化处理的子带系数的l_1范数表示用于规则化压缩感知重构.由于块子带自适应稀疏表示更加合理地表达了稀疏系数的重要性,使得重构图像能够更好地保留纹理、边缘等细节信息.大量的实验结果表明:相比组稀疏表示的压缩感知重构算法,该方法重构图像的峰值信噪比平均提高了0.69 dB. In view of the non-stationary characteristics of natural image and the large difference of the transformation coefficients in different image patches,a new image reconstruction method for compressive sensing(CS)was presented in this paper based on patch bandwise adaptive sparse representation(PBASR)regularization.Specifically,both the expectation and the variance parameters of the distribution of image patches subband coefficients were first adaptively estimated based nonlocal similar patch group.Then,the subband coefficients subtracted by the expectation values were normalized by the variance.Lastly,the l 1 norm of the resulting coefficients were used to regularize CS image reconstruction.Since the subband adaptive sparse representation reasonably reflected the importance of sparse coefficients,the reconstructed image well retained the details such as the textures and edges.Extensive experiments demonstrated that compared with compressed sensing reconstruction algorithm with group sparse representation,the peak signal-to-noise ratio of reconstructed image was improved by 0.69 dB.
作者 熊承义 龚忠毅 高志荣 张梦杰 Xiong Chengyi;Gong Zhongyi;Gao Zhirong;Zhang Mengjie(Hubei Key Laboratory of Intelligent Wireless Communication,College of Electronics and Information Engineering,South-Central University for Nationalities,Wuhan 430074,China;College of Computer Science,South-Central University for Nationalities,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 2018年第4期115-119,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61471400)
关键词 压缩感知 图像重构 块子带自适应 稀疏表示 compressive sensing image reconstruction patch bandwise adaptive sparse representation
  • 相关文献

参考文献3

二级参考文献145

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献842

同被引文献40

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部