期刊文献+

基于相关搜索的前向序列特征选择算法 被引量:3

Forward Sequence Feature Selection Algorithm based on Correlation Search
下载PDF
导出
摘要 针对传统的前向序列特征算法中存在的"嵌套效应",提出了一种新的次优特征子集搜索策略。算法主要的改进在于每次对特征进行前向搜索时会同时找出与其高度相关的特征组合,再次搜索时忽略这些特征避免特征子集过度冗余,即通过减少每次所选特征之间的相关性来获得更优的特征子集。在两个不同的数据集上的实验结果表明,相对于传统的特征选择算法,基于相关的前向序列特征选择算法的性能更优,可以得到更好的特征子集,尤其是在需要选择较小特征子集的情况下。 Aiming at the"nesting effect"existing in the traditional forward sequence feature algorithm,a new sub-optimal feature subset search strategy is proposed.The main improvement of the algorithm is that each time a feature is forward searched;it will simultaneously find a combination of features that are highly correlated with it.When performing a further search,these features are ignored to avoid excessive redundancy of feature subsets,i.e.,by reducing the correlation between each selected feature to obtain a better subset of features.Experimental results on two different data sets indicate that the performance of the correlation-based forward-sequence feature selection algorithm is better than the traditional feature selection algorithm.It can get a better subset of features,especially if a smaller subset of features is selected.
作者 李三川 吴丽丽 LI San-chuan;WU Li-li(China Mobile Information Technology,Shenzhen Guangdong 518048,China)
出处 《通信技术》 2018年第12期2920-2924,共5页 Communications Technology
关键词 特征选择 相关搜索 序列选择 降维 feature selection correlation search sequence search dimensionality reduction
  • 相关文献

参考文献3

二级参考文献61

  • 1[2][美]DN古扎拉蒂著,林少宫译.计量经济学[M].北京:中国人民大学出版社,2000. 被引量:1
  • 2Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155. 被引量:1
  • 3Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539. 被引量:1
  • 4Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32. 被引量:1
  • 5Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226. 被引量:1
  • 6Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205. 被引量:1
  • 7Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555. 被引量:1
  • 8Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671. 被引量:1
  • 9Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426. 被引量:1
  • 10Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207. 被引量:1

共引文献228

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部