期刊文献+

进化计算在大规模高维特征选择中的应用综述

Review of Large-scale High-dimensional Feature Selection Based on Evolutionary Computation
下载PDF
导出
摘要 随着大数据时代的到来,数据的规模和特征维度呈现爆炸式增长,这给数据处理带来了前所未有的挑战。特征选择作为数据预处理的关键环节,在处理大规模高维数据时显得尤为重要。而进化计算方法因其出色的全局搜索能力和高效的优化性能,越来越多的研究者开始对其进行研究,其在大规模高维特征选择中得到了广泛的应用。本文首先介绍了大规模高维数据处理的重要性;然后简单介绍了部分经典和较新的进化计算方法,并详细介绍了其在大规模高维特征选择中的应用情况;最后对目前进化计算在大规模高维特征选择中存在的问题进行总结,并展望了其未来的发展方向。 With the advent of the big data era,the scale and feature dimensions of data show explosive growth,which brings unprecedented challenges to data processing.Feature selection,as a key link in data preprocessing,is particularly important when processing large-scale high-dimensional data.Due to its excellent global search capabilities and efficient optimization performance,more and more researchers begin to study the evolutionary computing method,and it is widely used in large-scale high-dimensional feature selection.This paper first introduces the importance of large-scale high-dimensional data processing.Then some classic and newer evolutionary calculation methods are briefly introduced,and their applications in large-scale high-dimensional feature selection are introduced in detail.Finally,the application of evolutionary computing in large-scale high-dimensional feature selection is summarized and its future development direction is prospected.
作者 叶志伟 王巧 周雯 王明威 蔡婷 何其祎 YE Zhiwei;WANG Qiao;ZHOU Wen;WANG Mingwei;CAI Ting;HE Qiyi(School of Computer Science,Hubei University of Technology,Wuhan 430068,China)
出处 《北方工业大学学报》 2024年第2期8-19,共12页 Journal of North China University of Technology
基金 基于杂交育种协同进化蚁群算法的工业大数据特征选择研究项目(62376089)
关键词 特征选择 进化计算 全局搜索 数据预处理 机器学习 feature selection evolutionary computation global search data preprocessing machine learning
  • 相关文献

参考文献2

  • 1姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:206
  • 2黄焕宇..基于遗传算法的高维数据特征选择和特征子集的组合分析[D].中山大学,2006:

二级参考文献52

  • 1Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155. 被引量:1
  • 2Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539. 被引量:1
  • 3Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32. 被引量:1
  • 4Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226. 被引量:1
  • 5Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205. 被引量:1
  • 6Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555. 被引量:1
  • 7Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671. 被引量:1
  • 8Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426. 被引量:1
  • 9Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207. 被引量:1
  • 10Forman G. An extensive empirical study of feature selection metrics for text classification[J]. J of Machine Learning Research, 2003, 3(11): 1289-1305. 被引量:1

共引文献205

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部