期刊文献+

支持向量回归特征提取的ARMA准则——中国社会消费品零售总额预测的实证研究 被引量:2

ARMA Criterion of Feature Extraction in Support Vector Regression:Empirical Research of Our National Social Total Retail Sales of Consumer Goods Prediction
下载PDF
导出
摘要 根据统计学习理论,针对局部灰色支持向量回归方法,提出了单变量经济时间序列预测特征提取的ARMA准则。对中国社会消费品零售总额的试验结果表明:ARMA准则能客观准确地实现特征提取,获得较高的预测精度。 According to the method of local grey support vector regression in statistical learning theory, the ARMA criterion of feature extraction for single variable financial time series prediction is put forward.The experimental result of our national social total retail sales of consumer goods demonstrates that the ARMA criterion can objectively and accurately perform feature extraction and gain the higher accuracy of prediction.
作者 蒋辉 张波
出处 《统计与信息论坛》 CSSCI 2012年第7期3-7,共5页 Journal of Statistics and Information
基金 国家自然科学基金项目<基于高频数据的股市极端风险测度及其防范研究>(71071155) 中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)项目<基于高频数据的中国金融市场若干重大问题研究>(10XNL007)
关键词 支持向量 局部回归 ARMA准则 特征提取 经济预测 support vector local regression ARMA criterion feature extraction economic prediction
  • 相关文献

参考文献16

  • 1Vapnik V N. Statistical Learning Theory[M]. New York .. Wiley, 1998. 被引量:1
  • 2Jiang H, Wang Z. GMRVVm-SVR Model for Financial Time Series Forecasting[J]. Expert Systems with Applications, 2010,37(12). 被引量:1
  • 3Kim K. Financial Time Series Forecasting Using Support Vector Machines[J]. Neurocomputing, 2003,55. 被引量:1
  • 4Tay F E H, Cao L J. Modified Support Vector Machines in Financial Time Series Forecasting[J]. Neurocomputing, 2002,48(1-4). 被引量:1
  • 5姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:206
  • 6He W, Wang Z, Jiang H. Model Optimizing and Feature Selecting for Support Vector Regression in Time Series Forecasting[J]. Neurocomputing, 2008. 被引量:1
  • 7Yang H, Huang K I, King, Lyu M tL Localized Support Vector Regression for Time Series Prediction[J]. Neurocomputing, 2009,72(10-12). 被引量:1
  • 8Jiang H, He W. Grey Relational Grade in Local Support Vector Regression for Financial Time Series Prediction[J]. Expert Systems with Applications, 2012,39(3). 被引量:1
  • 9邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 10Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998(2). 被引量:1

二级参考文献75

  • 1张光亚,刘桂兰,方柏山.基于支持向量机识别嗜热和常温蛋白的研究[J].计算机与应用化学,2006,23(8):707-710. 被引量:5
  • 2Schnell J R, Chou J J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451:591-U512. 被引量:1
  • 3Pan X Y, Shen H B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein and Peptide Letters, 2009, 16:1447-1454. 被引量:1
  • 4Zhang H, Zhang T, Chen K, Shen S Y, Ruan J S, Kurgan L. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins:Structure Function and Bioinformatics, 2009, 76:617-636. 被引量:1
  • 5Smith D K, Radivojac P, Obradovic Z, Dunker A K, Zhu G Improved amino acid flexibility parameters. Protein Science, 2003, 12:1060-1072. 被引量:1
  • 6Yuan Z, Bailey T L, Teasdale R D. Prediction of protein B-factor profiles. Proteins:Structure Function and Bioinformatics, 2005, 58:905-912. 被引量:1
  • 7Wang C C, Fang Y P, Xiao J M, Li M L. Identification of RNA-binding sites in proteins by integrating various sequence information. Amino Acids, 2010:239-248. 被引量:1
  • 8Sehlessinger A, Rost B. Protein flexibility and rigidity predicted from sequence. Proteins:Structure Function and Bioinformaties, 2005, 61:115-126. 被引量:1
  • 9Jones D T. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 1999, 292:195-202. 被引量:1
  • 10Fisher E W, Rojnuckarin A, Kim S. Effects of local repositioning of charged surface residues on the kinetics of protein dimerization probed by Brownian dynamics simulations. Journal of Molecular Structure-Theochem, 2002, 592:37-45. 被引量:1

共引文献206

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部