期刊文献+

双曲函数表示级数封闭形和式

Hyperbolic Function Representations of Closed Form of Class Series
下载PDF
导出
摘要 国内外数论方面有关级数和式问题的研究有大量不同的方法和结果,针对如下级数和式问题:设c∈Q\{0},∑n∈z(1/n^2+c^2);∑n∈z1/((n^2+c^2)~2);∑n∈z1/(n^2-c^2);∑n∈z1/(n^4+c^4);∑n∈z1/(n^4-c^4);∞∑-∞((-1)~n)/(n^2+c^2);∞∑n=1((-1)~n)(n^3sinh(nπ)),提出应用双曲函数研究数论的性质,给出应用双曲函数表示的级数封闭形和式。利用复数棣莫弗公式、双曲函数特性、傅里叶变换以及复变函数的方法,给出这类级数和式的双曲函数表达形式。并应用留数定理对所给出的这类应用双曲函数表示的级数封闭形和式作出证明。 There are a lot of different methods and results in the study of series and formula problems in the theory of numbers at home and abroad.For the following sums of series:∑n∈z1/n^2+c^2;∑n∈z1/n^2-c^2;∞∑-∞(-1)^n/n^2+c^2;∞∑n=1(-1)n^/n^3sinh(nπ),the properties of number theory are studied by using hyperbolic functions,and the closed form sum of series expressed by hyperbolic functions is given.The hyperbolic function expression of this kind of series sum is given by using the complex Dimmer formula,the characteristic of hyperbolic function,Fourier transform and the method of complex variable function.The closed form sum expressed by hyperbolic function is given,and the closed form expressed by hyperbolic function is proved by residue theorem.
作者 陈艳丽 张来萍 及万会 CHEN Yan-li;ZHANG Lai-ping;JI Wan-hui(Department of Basic Courses,Yinchuan Energy College,Yongning,Yinchuan 750105,China)
出处 《河北北方学院学报(自然科学版)》 2018年第9期1-6,16,共7页 Journal of Hebei North University:Natural Science Edition
关键词 傅里叶变换 复变函数 双曲函数 封闭形 级数 Fourier transform complex analysis hyperbolic function closed form series
  • 相关文献

参考文献6

二级参考文献15

  • 1Wheelon AD,On the summation of infinite series in closed form[J].J Appl Phys,1954,25(01):113-118 被引量:1
  • 2Sofo A.Closed form representation of binomial sums and series[J].Le.Matematiche,1999,54(01):175-186 被引量:1
  • 3编写组.数学手册[M].北京:人民教育出版社,1979.802~803. 被引量:8
  • 4Sury B,Wang T N,Zhao F Z. Some identities involving of binomial coefficients [J]. Journal of Integer Sequences, 2004,7(2):1-12. . 被引量:1
  • 5Sofo A. General properties involving reciprocal of Binomial coefficients[J]. Journal of Integer Sequences, 2006,9(4): 1-13. 被引量:1
  • 6Sprugnoli R. Sums of reciprocal of the central binomial coefficients[J]. Integral: Electronic Journal of Combinatorial NumberTheory, 2006, 6: 1-17. 被引量:1
  • 7Yang J H, Zhao F Z. Sums involving the inverses of binomial coefficients [J]. Journal of Integer Sequences,2006, 9(4): 1-11. 被引量:1
  • 8Borwein J M,Girgensohn R. Evaluation of binomial series[J]. Aequationens Math, 2005,70: 25-36. 被引量:1
  • 9Amghibech S. On sum involving Binomial coefficient[J]. Journal of Integer Sequences, 2007,10(2): 1-4. 被引量:1
  • 10Wheelon AD. On the summation of infinite series in closed form[J].Journal of Applied Physics,1954.113-118. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部