摘要
利用反正切函数关系arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1))得到一类反正切序列封闭形和式,利用微分法得到一类分式序列封闭形和式,并给出反正切级数与分式级数恒等式.
Utilizing arctangent arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1)),we get that the closed form sum of one class arctangent sequence and by differential method we get the closed form sum of one class of fractional sequences.And we obtain the identities of arctangent series and fractional series.
出处
《河北北方学院学报(自然科学版)》
2012年第2期9-12,共4页
Journal of Hebei North University:Natural Science Edition
基金
银川能源学院科研基金项目(2011-37-15)