期刊文献+

人工智能背景下的配送网络优化方法研究 被引量:3

Research on Optimization of Distribution Network under Artificial Intelligence Background
下载PDF
导出
摘要 伴随着人工智能的快速发展,在配送领域内无人机得到广泛应用;针对卡车和无人机在配送中的特征,提出卡车与无人机联合配送模式下的路线网络规划问题;在假定该模式具体应用情境的基础上,分别以碳排放量以及配送效率为目标建立路径规划模型,根据模型的特征设计了相应的求解方法;最后通过算例论证联合配送模式的可行性与有效性。 With the rapid development of artificial intelligence,UAVs are widely used in the field of distribution.Aiming at the characteristics of truck and UAV in distribution,this paper proposes the route network planning problem under the mode of joint delivery between truck and UAV.Based on the specific application scenarios of this model,the path planning model is set up respectively based on the carbon emissions and the distribution efficiency,and the corresponding solution method is designed according to the characteristics of the model.Finally,an example is given to illustrate the feasibility and effectiveness of the joint distribution mode.
作者 叶春森 王雪轩 时章漫 黄成成 YE Chun-sen;WANG Xue-xuan;SHI Zhang-man;HUANG Cheng-cheng(School of Business,Anhui University,Anhui Hefei 230601,China;Logistics and Supply Chain Research Center,Anhui University,Anhui Hefei 230601,China)
出处 《重庆工商大学学报(自然科学版)》 2018年第6期22-26,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家社会科学基金项目(15BJY117 15CGL011) 安徽大学项目(J10118458077 J01001942)
关键词 人工智能 联合配送 配送路径规划 配送效率 碳排放 artificial intelligence joint delivery delivery path planning delivery efficiency carbon emission
  • 相关文献

参考文献7

二级参考文献41

  • 1方金城,张岐山.物流配送车辆路径问题(VRP)算法综述[J].沈阳工程学院学报(自然科学版),2006,2(4):357-360. 被引量:25
  • 2许国银,熊孝和,林涛.基于GASA算法的成品燃油战时公路配送路径优化[J].解放军理工大学学报(自然科学版),2007,8(2):180-185. 被引量:6
  • 3汤浅和夫,门峰.IT物流[M].上海:文汇出版社,2002. 被引量:7
  • 4Dantzig G, Ramser J. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91. 被引量:1
  • 5Br?ysy O, Gendreau M. Vehicle routing problem with time windows, part I: Route construction and local search[J]. Transportation Science, 2005, 39: 104-118. 被引量:1
  • 6Br?ysy O, Gendreau M. Vehicle routing problem with time windows, part II: Metaheuristics[J]. Transportation Science, 2005, 39: 119-139. 被引量:1
  • 7Najera A G, Bullinaria J A. An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows[J]. Computers & Operations Research, 2011, 38: 287-300. 被引量:1
  • 8Sbihi A, Eglese R W. Combinatorial optimization and green logistics[J]. 4OR: A Quarterly Journal of Operations Research, 2007, 5(2): 99-116. 被引量:1
  • 9Fagerholt K, Laporte G, Norstad I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529. 被引量:1
  • 10Bauer J, Bekta? T, Crainic T G. Minimizing greenhouse gas emissions in intermodal freight transport: An application to rail service design[J]. Journal of the Operational Research Society, 2010, 61(3): 530-542. 被引量:1

共引文献61

同被引文献23

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部