期刊文献+

基于协同探测数据融合的水下多目标跟踪 被引量:3

Underwater Multi-Target Tracking Based on Collaborative Detection Data Fusion
下载PDF
导出
摘要 在高杂波密度的水下环境中,若只利用局部传感器来跟踪多个目标,会产生较高的虚警,而且跟踪效果受限于传感器本身性能。为此文中基于分布式数据融合模型,首先在各个无人平台上利用联合概率数据关联(JPDA)形成局部航迹,然后再用匈牙利算法实现对关联矩阵的最优分配从而达到航迹的实时关联,最后通过凸组合融合算法形成全局航迹。仿真结果表明,经过此方法完成的多目标跟踪结果具有更好的可靠性,其跟踪精度基本在两站跟踪精度之间且具有较低的跟踪误差,适合在未知基站估计精度的系统中获得更为可信的估计结果。 In the underwater environment with high clutter density,high rate of false alarms will be generated if only local sensors are used to track multiple targets,meanwhile the tracking effect is limited by the performance of the sensors.Therefore,based on the distributed data fusion model,this paper first uses the joint probability data association(JPDA)to form a local track on each unmanned platform,then uses Hungarian algorithm to implement the optimal allocation of the correlation matrix so as to achieve real-time track correlation,finally forms a global track through the convex combination fusion algorithm.Simulation results show that the multi-target tracking results of this method are more reliable,and the tracking accuracy is almost between the tracking accuracy of two stations with smaller tracking error.It is concluded that the present method is suitable for obtaining more reliable estimation results in the system with unknown base station estimation accuracy.
作者 郭龙祥 虞涵钧 生雪莉 韩笑 郝豪言 陈洋 GUO Long-xiang;YU Han-jun;SHENG Xue-li;HAN Xiao;HAO Hao-yan;CHEN Yang(Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001,China;College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《水下无人系统学报》 北大核心 2018年第5期387-394,共8页 Journal of Unmanned Undersea Systems
基金 国家自然科学基金(51779061).
关键词 水下多目标跟踪 高杂波密度 分布式数据融合 联合概率数据关联 匈牙利算法 凸组合融合 underwater multi-target tracking high clutter density distributed data fusion joint probability data association(JPDA) Hungarian algorithm convex combination fusion
  • 相关文献

参考文献9

二级参考文献57

  • 1周莉,何友,修建娟,李瑞芬.解二维分配问题的行列启发式算法[J].系统工程与电子技术,2004,26(7):906-910. 被引量:4
  • 2孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004,29(6):481-490. 被引量:101
  • 3刘航,窦丽华.基于可行矩阵分析的被动传感器数据关联方法[J].北京理工大学学报,2006,26(10):875-878. 被引量:3
  • 4Bar-Shalom Y. On hierarchical tracking for the real world[J]. IEEE Trans. on Aerospace and Electronic Systems. 2006. 42 (3): 846 - 850. 被引量:1
  • 5Saha R K, Chang K C. An efficient algorithm for muhisensor track fusion[J]. IEEE Trans. on.Aerospace and Electronic Systems, 1998, 34(1): 200 210. 被引量:1
  • 6Chang K C, Saha R K, Bar-Shalom Y. On optimal track-to-track fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(4): 1271 - 1275. 被引量:1
  • 7Chen H, Kirubarajan T, Bar-Shalom Y. Performance limits of track-to track fusion versus centralized estimation :theory and application[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(2):386 - 400. 被引量:1
  • 8Chang K C, Tian Z, Saha R K. Performance evaluation of track fusion with information matrix filter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(2): 455-466. 被引量:1
  • 9Qiao X D, Chang K C. Information matrix fusion with feedback ver sus number of sensors[C],//Proc, of 7th lnternatio,al Conf. on Information Fusion, Stockholm, Sweden, 2004:686- 692. 被引量:1
  • 10Juiler S, Uhlamann J. General decentralized data fusion with covariance intersection[C]//Handbook of Multiserasor Data Fusion, Boca Raton, CRC Press, 2001. 被引量:1

共引文献73

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部