期刊文献+

基于大数据的驾驶风格识别算法研究 被引量:13

Research on Driving Style Recognition Algorithm Based on Dig Data
下载PDF
导出
摘要 开展了基于大数据识别驾驶员驾驶风格的方法,建立驾驶风格识别数据库,包含80名驾驶员并覆盖不同性别、年龄、驾龄、驾驶习惯等属性,从数据库中提取能够反映驾驶风格的工况,包括换道、转弯、跟车等7种工况总计万余条工况数据,最后利用K均值聚类方法和D-S证据理论决策融合方法进行聚类分析,训练并测试了驾驶风格识别模型。经过验证,所提出的驾驶风格识别方法查准率达到80%。 In this paper,driving style recognition method based on big data was researched,and a driving style recognition database was established,which included 80 drivers covering different attributes such as gender,age,driving age,driving habits,etc.Then,tens thousands of data in seven driving conditions,which could reflect driving style were extracted from the database,including lane change,turning,vehicle following and so on.Finally,the K-means clustering method and D-S evidence theory decision fusion method were used for cluster analysis.And the driving style recognition model was trained and tested.After verification,the precision rate of the recognition method proposed is up to 80%.
作者 吴振昕 何云廷 于立娇 付雷 陈盼 Wu Zhenxin;He Yunting;Yu Lijiao;Fu Lei;Chen Pan(Intelligent Connected Vehicle Development Institute of China FAW Group Co.,Ltd.,Changchun 130011)
出处 《汽车技术》 CSCD 北大核心 2018年第10期10-15,共6页 Automobile Technology
关键词 驾驶风格识别 工况辨识 机器学习 决策融合 Driving style recognition Vehicle operating modes identification Machine learning Decision fusion
  • 相关文献

参考文献13

二级参考文献218

共引文献2027

同被引文献73

引证文献13

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部