期刊文献+

基于卷积神经网络的驾驶人行为识别方法研究 被引量:19

Research on driver behavior recognition method based on convolutional neural network
下载PDF
导出
摘要 为探究汽车驾驶人非安全驾驶行为的识别问题,在简要分析现有驾驶人行为识别方法的基础上,提出一种基于卷积神经网络(CNN)的驾驶人行为识别方法,分析CNN前向传播与反向传播过程,给出处理驾驶人行为识别问题的CNN网络架构。结果表明:用该方法可识别,其平均识别率达97.13%,相对于传统提取方向梯度直方图特征(HOG),并用随机森林(RF)分类的算法,该方法的识别率平均提高了3.62%。 In order to explore identification of unsafe driving behaviors of car drivers,concrete studies were carried out on CNN-based driver behavior recognition algorithm building on brief analysis of existing driver behavior recognition methods.CNN forward propagation and back propagation processes were explored and a CNN network architecture that deals with driver behavior recognition was presented.The results show that this method achieves an average recognition rate of 97.13%on state-farm driver behavior dataset,and compared with traditional algorithm,it has improved 3.62%on average in extracting histogram of oriented gradient(HOG)feature and using random forest(RF)classification for identification.
作者 徐丹 代勇 纪军红 XU Dan;DAI Yong;JI Junhong(School of Mechatronics Engineering,Harbin Institute of Technology,Harbin Heilongjiang 150001,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2019年第10期12-17,共6页 China Safety Science Journal
基金 机器人技术与系统国家重点实验室自主课题(SKLRS201705A).
关键词 驾驶人行为识别 卷积神经网络(CNN) 前向传播 反向传播 深度学习 驾驶安全 driver behavior recognition convolutional neural network(CNN) forward propagation back propagation deep learning driving safety
  • 相关文献

参考文献5

二级参考文献12

共引文献20

同被引文献131

引证文献19

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部