期刊文献+

基于改进深度残差网络的低功耗表情识别 被引量:11

Energy-efficient Facial Expression Recognition Based on Improved Deep Residual Networks
下载PDF
导出
摘要 为了提高表情识别率并降低表情识别的功耗,提出一种基于改进深度残差网络的表情识别方法。残差学习在解决深度卷积神经网络退化问题、使网络层次大幅加深的同时,进一步增加了网络的功耗。为此,引入具有生物真实性的激活函数来代替已有的整流线性单元(Rectified Linear Units,ReLU)函数,并将其作为卷积层激活函数对深度残差网络进行改进。该方法不仅提高了残差网络的精度,而且训练出的网络权重可直接作为与该深度残差网络具有相同结构的深度脉冲神经网络的权重。将该深度脉冲神经网络部署在类脑硬件上时,其能够以较高的识别率和较低的能耗进行表情识别。 To improve recognition rate and reduce power consumption of facial expression recognition systems,this paper proposed a facial expression recognition method using an improved deep residual networks(ResNets).Residual learning solves the degradation problem of the deep Convolutional Neural Networks(CNNs)to a certain degree and increases the network layers infinitely,but it makes deep CNNs face a more serious power consumption problem.To solve this problem,this paper introduced a new biologically-plausible activation function to improve ResNets and get a facial expression recognition method with both higher performance and lower power consumption.The Rectified Linear Units(ReLU)in the convolutional layers of ResNets are replaced with the new activation function Noisy Softplus.The obtained weights by using the improved ResNets can be directly applied to a deep Spiking Neural Networks(SNNs)architecture derived from the ResNets.The experimental results suggest that the proposed facial expression recognition method is able to achieve higher recognition rate and lower power consumption on a neuromorphic hardware.
作者 杜进 陈云华 张灵 麦应潮 DU Jin;CHEN Yun-hua;ZHANG Ling;MAI Ying-chao(School of Computers,Guangdong University of Technology,Guangzhou 510000,China)
出处 《计算机科学》 CSCD 北大核心 2018年第9期303-307,319,共6页 Computer Science
基金 广东省自然科学基金项目(2016A030313713 2014A030310169) 广东省产学研合作专项项目(2014B090904080) 广东省交通运输厅科技项目(科技-2016-02-030)资助
关键词 表情识别 残差网络 Leaky INTEGRATE and Fire(LIF)神经元 卷积神经网络 Facial expression recognition Residual networks Leaky Integrate and Fire(LIF)neurons Convolutional neural networks
  • 相关文献

同被引文献63

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部