期刊文献+

基于机车车载视频序列的人眼疲劳快速定位方法研究 被引量:4

Research on method for fast eye fatigue location based on locomotive-mounted video sequences
下载PDF
导出
摘要 人眼定位是非接触式机车车辆乘务员实时疲劳检测中最基本的关键环节。针对机车车载视频序列进行疲劳检测时存在实时性、鲁棒性要求高的问题,结合计算机视觉和图像处理技术,提出一种多算法融合的人眼疲劳快速定位方法。利用基于Haar-like特征的Ada Boost人脸检测方法检测视频序列中乘务员人脸并设置目标跟踪区域,利用Camshift目标跟踪算法快速定位人脸;基于人脸和人眼的对称性等先验知识,提出比例缩减区域(PRA)的方法快速定位人眼。研究结果表明:该方法可以有效减少误检,适应复杂光照,并具有实时性和鲁棒性,为机车车辆乘务员疲劳实时检测提供理论和实践参考。 Eye location is the key link in the real-time fatigue detection of non contact locomotive drivers.In order to solve the problem of real-time performance and high robustness in locomotive-mounted video sequences,a new method of fast eye fatigue location based on multiple algorithm fusion was proposed by combining computer vision and image processing techniques.Firstly,it detected face in video sequence to use the method of AdaBoost based on Haar-like feature,setting target tracking area and using Camshift algorithm to track it.Secondly,the method of the Proportion Reduction Area was proposed to locate eye based on the prior knowledge of the symmetry of face and eye.Experimental results show that the method reduces the complexity and error detection,which can be adapted to the complex illumination,and has the advantages of real-time and robustness.It can provide theoretical and practical references for real-time fatigue detection of locomotive drivers.
作者 贺德强 刘卫 卢凯 肖琼 江洲 HE Deqiang;LIU Wei;LU Kai;XIAO Qiong;JIANG Zhou(College of Mechanical Engineering,Guangxi University,Nanning 530004,China;Nanning CRRC Rail Transit Equipment Co.Ltd,Nanning 530200,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2018年第9期2359-2366,共8页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(51165001) 广西科技攻关资助项目(1598009-6) 南宁市科技攻关资助项目(20151021)
关键词 机车车载视频序列 人眼定位 ADABOOST CAMSHIFT 比例缩减区域 locomotive-mounted video sequences eye location AdaBoost Camshift proportion reduction area
  • 相关文献

参考文献8

二级参考文献65

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3宋志雄.机车司机行车安全监控系统应用研究[J].中国安全科学学报,2005,15(10):110-112. 被引量:7
  • 4HU Weiming,Tan Tieniu,WANG Liang. A survey on visual surveillance of object motion and behaviors[J]. IEEE Trans. on Systems,Man,and Cybernetics,Part C: Applications and Reviews, 2004,34(3):334-352. 被引量:1
  • 5Stauffer C, Grimson WEL. Learing patterns of activity using real-time tracking[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2000,22(8):747-757. 被引量:1
  • 6Ziliani F, Cavallaro A. Image analysis for video surveillance based on spatial regularization of statistical model-based change detection[ C ].London:Academic Press,2001,7(5):389-399. 被引量:1
  • 7Verri A, Poggio T. Motion field and optical flow:qualitative properties[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989,11(5):490-498. 被引量:1
  • 8Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc. of IEEE Conf on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA: [s. n.], 2001. 被引量:1
  • 9Lienhart R, Maydt J. An Extended Set of Haar-like Features for Rapid Object Detection[C]//Proc. of ICIP'02. New York, USA: [s. n.], 2002. 被引量:1
  • 10Li S Z, Zhu Long, Zhang Zhenqiu, et al. Learning to Detect Multi-view Faces in Real-time[C]//Proceedings of the 2nd International Conference on Development and learning. New York, USA: [s. n.], 2002. 被引量:1

共引文献162

同被引文献42

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部