期刊文献+

基于新Haar-like特征的多角度人脸检测 被引量:17

Multi-angle Face Detection Based on New Haar-like Feature
下载PDF
导出
摘要 在Haar-like特征的基础上增加新的检测特征,给出特征计算方法和积分方法,实现多角度人脸检测。将多角度人脸分为3类,即全侧脸、半侧脸和正面人脸。利用连续Adaboost算法训练各类人脸检测器,用金字塔式结构将各类人脸检测器级联成一个多角度人脸检测器。在CMU人脸检测集合上,该检测器的成功率为85.2%,高于Adaboost算法和浮点Adaboost算法。 This paper adds some new detection features on the basis of Haar-like feature, gives the feature calculation method and integration method, and achieves multi-angle face detection. It divides multi-angle face into three categories: all side face, half side face and positive face. Continuous Adaboost algorithm is used to train various types of face detector. It cascades various types of face detectors into a multi-angle face detector by using pyramid-style structure. In CMU face detection aggregation, the success rate of this detector is 85.2% which is higher than that of Adaboost algorithm and float Adahoost algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第19期195-197,共3页 Computer Engineering
基金 国家自然科学基金资助项目(10702067)
关键词 Haar—like特征 特征计算 连续Adaboost算法 金字塔式结构 Haar-like feature feature calculation continuous Adaboost algorithm pyramid-style structure
  • 相关文献

参考文献4

  • 1Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features[C]//Proc. of IEEE Conf on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA: [s. n.], 2001. 被引量:1
  • 2Lienhart R, Maydt J. An Extended Set of Haar-like Features for Rapid Object Detection[C]//Proc. of ICIP'02. New York, USA: [s. n.], 2002. 被引量:1
  • 3武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 4Li S Z, Zhu Long, Zhang Zhenqiu, et al. Learning to Detect Multi-view Faces in Real-time[C]//Proceedings of the 2nd International Conference on Development and learning. New York, USA: [s. n.], 2002. 被引量:1

二级参考文献13

  • 1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243. 被引量:1
  • 2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999. 被引量:1
  • 3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53. 被引量:1
  • 4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000. 被引量:1
  • 5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997. 被引量:1
  • 6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999. 被引量:1
  • 7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001. 被引量:1
  • 8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156. 被引量:1
  • 9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336. 被引量:1
  • 10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000. 被引量:1

共引文献65

同被引文献124

引证文献17

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部