期刊文献+

多基地雷达自适应CFAR检测融合算法 被引量:1

An Adaptive Fusion Algorithm of CFAR Detection for Multisite Radar
下载PDF
导出
摘要 文章针对多基地雷达的目标RCS在入射角分布起伏较大的问题,提出了基于目标入射角RCS分布未知的检测融合方法。由于目标RCS在入射电波观测角的起伏较大且未知,导致局部雷达站接收目标回波SNR(信噪比)无法确定,无法应用传统的贝叶斯方法获得最佳的融合检测性能。该方法是一种基于无信噪比信息的检测融合算法,通过传输其他雷达站接收信号的检验统计量来完成全局的CFAR检测。并且根据该方法设计了一种自适应门限的检测方法,其中本地雷达站的检测门限是基于其他雷达站接收信号的检验统计量生成。仿真结果表明,该检验方法的综合检测性能接近信噪比已知的融合检测性能。 Focusing on the target RCS fluctuating sharply in incident angle,this paper proposes a CFAR Detection Algorithm for Multisite Radar with unknown target SNR Information.Because target’s RCS is fluctuating and unknown sharp in incident angle,we cannot apply conservation Bayes fusion detection method directly because of unknown SNR of any radars’receive signal.This method is a fusion way which finish the total CFAR detection by the test statistic of each radar’s receiving signal without SNR information.Then we design a detection method with adaptive threshold that is gained by other radar’s receive signal test statistic.Simulation results illustrate that a detection performance closing the known SNR information is obtained by the proposed algorithm.
作者 王楠 许蕴山 夏海宝 王嵩乔 WANG Nan;XU Yun-shan;XIA Hai-bao;WANG Song-qiao(Air Force Engineering University,Xi’an,Shaanxi 710038,China)
机构地区 空军工程大学
出处 《信号处理》 CSCD 北大核心 2018年第7期818-823,共6页 Journal of Signal Processing
基金 航空科学基金资助项目(20155596024)
关键词 CFAR检测 多基地雷达 起伏目标 CFAR detection multisite radar fluctuating target
  • 相关文献

参考文献2

二级参考文献25

  • 1Chair Z, Varshney P K. Optimal data fusion in multiple sensor detection system[J]. IEEE Trans Aerosp Electron Syst, 1986,22(1):98-101. 被引量:1
  • 2Han Y I,Taejeong K. Randomized fusion rules can be optiaml in distributed Neyman-Pearson detectors[J]. IEEE Trans Inform Theory, 1997,43(4):1281-1288. 被引量:1
  • 3Naim A, Kam M. On-line estimation of probabilities for distributed Bayesian detection[J]. Automatica,1994,30(4):633-642. 被引量:1
  • 4Ansari N, Chen J G, Zhang Y Z. Adaptive decision fusion for unequiprobable sources[J]. IEE Proceedings on Radar Sonar and Navigation, 1997,144(3):105-111. 被引量:1
  • 5Mirjalily G, Luo Zhiquan. Blind adaptive decision fusion for distributed detection[J]. IEEE Trans Aerosp Electron Syst,2003,39(1):34-52. 被引量:1
  • 6Xiang M,Zhao J. On the performance of distributed Neyman-Pearson detection systems[J]. IEEE Trans Syst Man Cybern, Part A: Systems and Human, 2001,31(1):78-83. 被引量:1
  • 7HAIMOVICH A, BLUM R, CIMINI L, et al. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129. 被引量:1
  • 8ZHOU S H and LIU H W. Space-partition-based target detection for distributed MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2717-2729. 被引量:1
  • 9XU G, ZHU S Y, and CHEN B. Decentralized data reduction with quantization constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1775-1784. 被引量:1
  • 10GAO F, GUO L L, LI H B, et al. Quantizer design for distributed GLRT detection of weak signal in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(4): 2032-2042. 被引量:1

共引文献12

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部