期刊文献+

基于删失数据的低通信量融合检测方法 被引量:1

A Low-communication-rate Fusion Approach Based on Censored Data
下载PDF
导出
摘要 在多基地雷达中,该文为解决局部雷达站同融合中心之间通信带宽受限的问题,提出一种基于删失数据的分布式融合(CDDF)检测算法。在局部雷达站具有多通道接收系统的条件下,计算了杂波背景下动目标回波信号的似然比函数。各个局部雷达站根据其自身传输信道的通信限制设置局部门限,剔除低于局部门限的似然比,同时将高于局部门限的似然比向融合中心传输。基于奈曼-皮尔逊引理,融合中心根据接收到的删失数据计算全局检验统计量,并将其与全局门限进行比较获得全局判决。此外,该文推导了全局门限同虚警概率或者检测概率的闭式表达式。数值仿真表明,该算法可以在大幅降低通信率的同时获得比"或"准则更好的检测性能,并且随着通信率的增加逐渐逼近集中式(CF)融合的检测性能。 In multistatic radar, a Censored Data-Based Decentralized Fusion (CDDF) is proposed to address the issue of fusing local observations with communication constraints. The local likelihood ratio is calculated based on the observation of moving target immersed in clutter, where the local radar site possesses a coherent multi- channel array Each local radar site transmits if and only if their observations' likelihood ratios exceed the local thresholds which determine the communication rates. By virtue of the Neyman-Pearson lemma, the global test statistic can be achieved by combining received censored data. The fusion center makes a global decision through comparing the global test statistic with a global threshold. Besides, the closed-form expression of probability of false alarm or probability of detection is also derived in this paper. Numerical simulation shows that the CDDF has better performance than "OR" rule, while approaching the performance of Centralized Fusion (CF) with the increase of the communication rate.
作者 曹鼎 周生华 刘宏伟 高畅 邵志强 CAO Ding;ZHOU Shenghua;LIU Hongwei;GAO Chang;SHAO Zhiqiang(National Laboratory of Radar Signal Processing,Xidian University,Xi'an 710071,China;Collaborative Innovation Center of Information Sensing and Understanding Xidian University,Xi'an 710071,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2826-2833,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61372134 61401329 61501351) 国家杰出青年科学基金(61525105)~~
关键词 多基地雷达系统 奈曼-皮尔逊引理 动目标检测 低通信量 删失数据 Multisite radar system Neyman-Pearson lemma Moving target detection Low communicationrate Censored data
  • 相关文献

参考文献2

二级参考文献32

  • 1ZHOU S H, LIU H W. Space-partition-based Target Detection for Distributed MIMO Radar [J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4) : 2717-2729. 被引量:1
  • 2FRANKFORD M T, STEWART K B, MAJUREC N, et al. Numerical and Experimental Studies of Target Detection with MIMO Radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2) : 1569-1577. 被引量:1
  • 3RADMARD M, CHITGARHA M M, MAJD M N, et al. Antenna Placement and Power Allocation Optimization in MIMO Detection [J].IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2) : 1468-1478. 被引量:1
  • 4LIU H W, ZHOU S H, SU H T, et al. Detection Performance of Spatial-frequency Diversity MIMO Radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4) : 3137-3155. 被引量:1
  • 5LIU J, ZHANG Z J, CAO Y H, et al. A Closed-form Expression for False Alarm Rate of Adaptive MIMO-GLRT Detector with Distributed MIMO Radar [J]. Signal Processing, 2013, 93(9) : 2771-2776. 被引量:1
  • 6:HOU S H, LIU H W. Signal Fusion-based Target Detection Algorithm for Spatial Diversity Radar [J]. lET Radar, onar & Navigation, 2011, 5(3): 204-214. 被引量:1
  • 7rARSHNEY P K. Distributed Detection and Data Fusion [M]. New York: Springer-Verlag, 1997. 被引量:1
  • 8AZIZ A M. A New Adaptive Decentralized Soft Decision Combining Rule for Distributed Sensor Systems with Data Fusion [J]. Information Sciences, 2014, 256(1): 197-210,. 被引量:1
  • 9APPADWEDULA S, VEERAVALLI V V, JONES D L. Decentralized Detection with Censoring Sensors [J].IEEE Transactions on Signal Processing, 2008, 56(4) : 1362-1373. 被引量:1
  • 10HE H, VARSHNEY P K. Distributed Detection with Censoring Sensors under Dependent Observations [C]// Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing. Piscataway: IEEE, 2014: 5055-5059. 被引量:1

共引文献12

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部