摘要
【目的】针对传统大区域棉花种植信息提取方法相对落后的问题,运用面向对象的影像分析方法,对无人机遥感试验获取的可见光影像进行棉花种植信息的提取。【方法】选用双子星My Fly Dream MTD固定翼无人机搭载佳能EF-M 18-55相机,获取新疆建设兵团第八师135团的可见光影像,借助e Cognition软件平台,运用面向对象的方法对研究区内棉花种植信息进行提取试验。【结果】目视解译提取的棉花种植面积为0.35 km2,面向对象提取的棉花种植面积为0.33 km2,分类结果精度为94.29%,误差系数为5.71%,可以有效地提取研究区域棉花种植信息。【结论】面向对象的分类方法相比于传统的基于像素的分类方法提取精度更高,更加接近于目视解译的提取结果。
【Objective】This project aims to use object-oriented image classification method to extract the planting information of the visible light remote sensing image of the UAV in the hope of providing a new method for extracting large-scale farmland information and improving the speed and precision of classification results.【Method】The study selected fixed-wing UAV equipped with a camera and obtained the visible light images of 135th regiment farm of the eighth division of Xinjiang Production and Construction Corps.With the help of eCognition software platform,using the object-oriented method,the cotton planting information in the study area was extracted for experiments.【Result】The planting area of cotton extracted by visual interpretation was 0.35 km 2,and that by object-oriented approach was 0.33 km 2.The results showed that this method could effectively extract the cotton planting area in the study area,and the classification accuracy reached 94.29%,error of 5.71%.【Conclusion】Compared with traditional pixel-based classification methods,using the object-oriented classification method to extract the range information of visible light images captured by UAV has higher extraction accuracy and is greatly closer to visual interpretation.
作者
李路曼
郭鹏
张国顺
周倩
吴锁智
LI Lu-man;GUO Peng;ZHANG Guo-shun;ZHOU Qian;WU Suo-zhi(College of Science,Shihezi University,Shihezi Xinjiang 832003,China;College of Information Science&Technology,Shihezi University,Shihezi Xinjiang 832003,China)
出处
《新疆农业科学》
CAS
CSCD
北大核心
2018年第3期548-555,共8页
Xinjiang Agricultural Sciences
基金
国家国际科技合作专项项目(2015DFA11660)
国家大学生创新创业训练计划项目(201710759064)
大学生研究训练项目(SRP2017212)~~