期刊文献+

基于系统模型的家电负荷辨识算法 被引量:4

An appliance load identification algorithm based on system model
下载PDF
导出
摘要 家电负荷识别是需求侧管理的关键技术之一,有助于实现用户侧的智能用电。文中结合系统辨识的基本原理和方法,将各家电负荷看作一个独立的系统,以稳态电压、稳态电流为特征,提出一种基于系统模型的家电负荷辨识算法。通过预先获取用电网络中各负荷的稳态数据,构建ARMAX线性模型库和Hammerstein非线性模型库。根据稳态电流波峰系数这一特征值对待识别负荷进行预筛选确定所属模型库类型,通过模型匹配原则进行负荷识别。文章通过实测数据验证了算法的有效性,可以准确地识别线性负荷以及非线性负荷,运算效率高,并且可以有效应对家庭网络中有新负荷加入的情况。 Household load identification is one of the key techniques in demand side management,which is helpful to realize intelligent power utilization of user side.Combined with the basic principle and method of system identification,each appliance load is seen as an independent system,and a new method of appliance load identification based on system model is proposed in this paper,which is characterized by steady-state current and steady-state voltage.The steady state data of each load in the power network is collected via priori approach in order to construct the ARMAX linear model library and the Hammerstein nonlinear model library.Computing the characteristic value of steady current crest,which can prescreen the load to identify which library it belongs.Then,the load identification is carried out by the model matching principle.The effectiveness of the algorithm is verified by the actual sampling load data,which can accurately determine the load state for both linear loads and nonlinear loads.Furthermore,the algorithm is efficient and can effectively cope with the situation when the new load joins the home network.
作者 祁兵 刘利亚 韩璐 王丽丽 阮文骏 Qi Bing;Liu Liya;Han Lu;Wang Lili;Ruan Wenjun(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206, China;State Grid Materials Co.,Ltd.,Beijing 100120,China;State Grid Jiangsu Electric Power Company,Nanjing 210024,China)
出处 《电测与仪表》 北大核心 2018年第7期23-30,共8页 Electrical Measurement & Instrumentation
基金 国家重点研发计划项目课题资助(2016YFB0901104)
关键词 负荷辨识 稳态数据 系统模型 预筛选 模型库 load identification steady state data system model prescreen model base
  • 相关文献

参考文献15

二级参考文献67

共引文献275

同被引文献40

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部