期刊文献+

稀疏正则非负矩阵分解的语音增强算法 被引量:6

Speech enhancement method based on sparsity-regularized non-negative matrix factorization
下载PDF
导出
摘要 对于非负矩阵分解的语音增强算法在不同环境噪声的鲁棒性问题,提出一种稀疏正则非负矩阵分解(SRNMF)的语音增强算法。该算法不仅考虑到数据处理时的噪声影响,而且对系数矩阵进行了稀疏约束,使其分解出的数据具有较好的语音特征。该算法首先在对语音和噪声的幅度谱先验字典矩阵学习的基础上,构建联合字典矩阵,然后更新带噪语音幅度谱在联合字典矩阵下的系数矩阵,最后重构原始纯净语音,实现语音增强。实验结果表明,在非平稳噪声和低信噪比(小于0 d B)条件下,该算法较好地削弱了噪声的变化对算法性能的影响,不仅有较高的信源失真率(SDR),提高了1~1.5个数量级,而且运算速度也有一定程度的提高,使得基于非负矩阵分解的语音增强算法更实用。 In order to improve the robustness of Non-negative Matrix Factorization(NMF)algorithm for speech enhancement in different background noises,a speech enhancement algorithm based on Sparsity-regularized Robust NMF(SRNMF)was proposed,which takes into account the noise effect of data processing,and makes sparse constraints on the coefficient matrix to get better speech characteristics of the decomposed data.First,the prior dictionary of the amplitude spectrum of speech and noise were learned and the joint dictionary matrix of speech and noise were constructed.Then,the SRNMF algorithm was used to update the coefficient matrix of the amplitude spectrum with noise in the joint dictionary matrix.Finally,the original pure speech was reconstructed,and enhanced.The speech enhancement performance of the SRNMF algorithm in different environmental noise was analyzed through simulation experiments.Experimental results show that the proposed algorithm can effectively weaken the influence of noise changes on performance under non-stationary environments and low Signal-to-Noise Ratio(SNR)(<0 dB),it not only has about 1-1.5 magnitudes improvement in Source-to-Distortion Ratio(SDR)scores,but also is faster than other algorithms,which makes the NMF-based speech enhancement algorithm more practical.
作者 蒋茂松 王冬霞 牛芳琳 曹玉东 JIANG Maosong;WANG Dongxia;NIU Fanglin;CAO Yudong(College of Electronic and Information Engineering,Liaoning University of Technology,Jinzhou Liaoning 121001,China)
出处 《计算机应用》 CSCD 北大核心 2018年第4期1176-1180,共5页 journal of Computer Applications
基金 辽宁省科学事业公益研究基金资助项目(20170056)~~
关键词 非负矩阵分解 语音增强 稀疏正则 鲁棒性 联合字典 Non-negative Matrix Factorization(NMF) speech enhancement sparsity-regularization robustness joint dictionary
  • 相关文献

参考文献2

二级参考文献33

  • 1徐静波,于洪涛,冉崇森.子带频谱分析的语音增强[J].应用科学学报,2006,24(3):232-235. 被引量:4
  • 2LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization [J]. Letters to Nature, 1999(401): 788-791. 被引量:1
  • 3EGGERT J, KORNER E. Sparse coding and NMF[ C]// Proceedings of the International Joint Conference on Neural. Washington, DC: IEEE Computer Society, 2004:2529 -2535. 被引量:1
  • 4LI HUA LIANG, ADALI T, WANG WEI, et al. Non-negative matrix factorization with orthogonality constraints for chemical Agent detection in Raman spectra[ C]//IEEE Workshop on Machine Learning for Signal Processing. Washington, DC: IEEE Computer Socie- ty, 2005:253-258. 被引量:1
  • 5ZDUNEK R, CICHOCKI A. Blind image separation using nonnegatire matrix factorization with Gibbs smoothing[ C]//Neural Information Processing, LNCS 4895. Berlin: Springer, 2008:519-528. 被引量:1
  • 6CHO Y C, CHOI S. Normegative features of spectro-temporal sounds for classification [J]. Pattern Recognition Letters, 2005, 26(9): 1327 -1336. 被引量:1
  • 7SAJDA P, DU S, PARRA L. Recovery of constituent spectra using non-negative matrix factorization [ C ]// Proceedings of Wavelets: Applications in Signal and Image Processing. San Diego: [ s. n. ], 2003:321-331. 被引量:1
  • 8GUILLAMET D, VITRIA J, SCHIELE B. Introducing a weighted non-negative matrix factorization for image classification [J]. Pattern Recognition Letters, 2003, 24(14): 2447-2454. 被引量:1
  • 9CICHOCKI A, ZDUNEK R, AMARI S I. Csiszar's divergences for non-negative matrix factorization: Family of new algorithms[ C]// Independent Component Analysis and Blind Signal Separation, LNCS3889. Berlin: Springer, 2006:32-39. 被引量:1
  • 10BOFILL P, ZIBULEVSKY M. Underdetermined source separation sparse representation[J]. Signal Processing, 2001(81): 2353 -2362. 被引量:1

共引文献15

同被引文献58

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部