期刊文献+

基于数据驱动字典和稀疏表示的语音增强 被引量:14

Speech Enhancement Based on Data-Driven Dictionary and Sparse Representation
下载PDF
导出
摘要 本文提出了一种基于数据驱动字典和过完备稀疏表示的自适应语音增强方法。首先在训练阶段采用干净语音基于K奇异值分解(K—singular value decomposition,K-SVD)算法训练过完备字典,然后在测试阶段根据含噪语音的噪声方差自适应选择最优的阈值,采用正交匹配追踪算法对含噪语音信号在过完备字典上进行稀疏分解,最后利用系数稀疏表示重构语音信号,从而达到语音增强的目。该方法不像传统语音增强方法那样减少或消去噪声,而是从字典中选取适当的原子表示纯净信号,从而把纯净信号从含噪信号中分离出来。对白噪声和有色噪声环境下重构语音进行了主客观评价。仿真结果显示:该方法能有效去除加性噪声,并且改善了语音质量。 An adaptive speech enhancement method based on Data-Driven Dictionary and overcompletely sparse representation theory is proposed.Firstly,using the K-singular value decomposition(K-SVD) algorithm,a dictionary that describes the clean speech content effectively is trained.Secondly,the prime threshold is adaptively selected according to noise variance of original noisy speech signal and the speech signal's sparsest coefficient vector is obtained through Orthogonal Matching Pursuit algorithm.And then the speech signal is recovered and speech enhancement is achieved.Different from the conventional techniques which improve the speech signal quality by suppression of noise and reduction of distortion,we select the appropriate atoms to represent speech signal.Thus, clean signal is separated from the noisy speech signal.In white or colored noise interference,the reconstructed speech signal via the proposed algorithm is evaluated by the objective and subjective evaluation.The experimental results show that the proposed algorithm can get ride of the addictive noise and improve speech quality.
作者 孙林慧 杨震
出处 《信号处理》 CSCD 北大核心 2011年第12期1793-1800,共8页 Journal of Signal Processing
基金 国家重大基础研究973课题(2011CB302903) 国家自然科学基金项目(60971129) 江苏省普通高校研究生科研创新计划项目(CX10B_191Z,CX10B_189Z)
关键词 语音增强 稀疏表示 过完备字典 正交匹配追踪 奇异值分解算法 speech enhancement sparse representation overcomplete dictionary Orthogonal Matching Pursuit singular value decomposition algorithm
  • 相关文献

参考文献15

  • 1Benesty J,Makino S,Chen J.Speech enhancement[M].Berlin,Germany:Springer,2005. 被引量:1
  • 2Hao J C,Attias H,Nagarajan S,Lee T W,Sejnowski T J.Speech enhancement,gain,and noise spectrum adaptation using approximate bayesian estimation[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17(1):24-37. 被引量:1
  • 3Yoshioka T,Nakatani T,Okuno H G.Noisy speech enhancement based on prior knowledge about spectral envelope and harmonic structure[A].2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)[C],2010:4270-4273. 被引量:1
  • 4Tantibundhit C,Pernkopf F,Kubin G.Joint time-frequency segmentation algorithm for transient speech decomposition and speech enhancement[J].IEEE Transactions on Audio,Speech,and Language Processing,2010,18(6):1417-1428. 被引量:1
  • 5Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41:3397-3415. 被引量:1
  • 6Gowreesunker B V,Tewfik A H.Learning sparse representation using iterative subspace identification[J].IEEE Transactions on Signal Processing,2010,58 (6):3055-3065. 被引量:1
  • 7Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. 被引量:1
  • 8Donoho D,Johnstone I M.Ideal spatial adaptation by wavelet shrinkage[J].Biomet rika,1994,81(3):425-455. 被引量:1
  • 9Chen S S,Donoho D L,and Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159. 被引量:1
  • 10Griffin A,Tsakalides P.Compressed sensing of audio signals using multiple sensors[A].in Proc.16th European Signal Processing Conference (EUSIPCO'08)[C],Lausanne,Switzerland,2008. 被引量:1

同被引文献109

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2邹霞,陈亮,张雄伟.基于Gamma语音模型的语音增强算法[J].通信学报,2006,27(10):118-123. 被引量:11
  • 3Donoho D. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 4Tsaig Y, Donoho D. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 533-548. 被引量:1
  • 5Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM REVIEW, 2001, 43(1) :129-159. 被引量:1
  • 6Candes E. Compressive sampling[ A]. Proceedings of the International Congress of Mathematicians [ C ] . Madrid, Spain,European Mathematioal Society Publishing House, 2006 : 1433-1452. 被引量:1
  • 7Andrecut M, Este R A, Kauffman S A. Competitive opti- mization of compressed sensing [ J ]. Journal of Physics A : Mathematical and Theoretical, 2007, (40) : 299-305. 被引量:1
  • 8Donoho D. For most underdetermined systems of linear e- quations, the minimal l2 norm near-solution approximates the sparsest near-solution [ EB/OL ]. http://www-stat. stanford, edu/donoho/Reports, 2007. 被引量:1
  • 9Candes E, Tao T. Decoding by linear programming [ J]. IEEE, Trans Inf Theory, 2005(51 ) : 4203-4215. 被引量:1
  • 10Giacobello D, Christensen M G, Murthi M N, Jensen S H, Moonen M. Retrieving sparse patterns using a com- pressed sensing framework : Applications to speech coding based on sparse linear prediction [ J ]. Signal Processing Letters, IEEE,2010, 17(1) : 103-106. 被引量:1

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部