期刊文献+

两种基于SVD的稀疏重构解相干改进算法 被引量:5

Two ameliorated de-coherence algorithms in sparse reconstruction based on SVD
下载PDF
导出
摘要 针对稀疏重构中正交匹配追踪(OMP)算法解相干问题,利用接收数据构造目标矩阵奇异值分解(SVD)后的大特征值对应的特征矢量,提出了两种改进解相干算法(NSO算法和MNSO算法).首先根据稀疏重构的框架下的阵列DOA估计模型,理论上分析了经典OMP算法、NSO算法和MNSO算法的运算量和重构精度,然后给出了算法性能的仿真结果.仿真结果表明,相对于经典OMP算法,两种改进算法的运算速度更快,稀疏重构效果更优.理论分析和仿真结果验证了两种改进算法的良好性能. In order to solve the coherent problem of orthogonal matching pursuit (OMP) algorithm in sparse reconstruction, this paper puts forward two ameliorated de-coherence algorithms (namely the NSO algorithm and the MNSO algorithm) by using the eigenvectors corresponding to large eigenvalues after singular value decomposition (SVD) of the object matrix of the received data construction. Firstly, based on the array DOA estimation model under the sparse reconstruction framework, the paper theoretically analyzes the amount of calculation and reconstruction precision of the classical OMP algorithm, the NSO algorithm and the MNSO algorithm, and then provides the simulation results of the algorithm performance. The simulation results show that the two ameliorated algorithms are faster and more effective in sparse reconstruction than the classical OMP algorithm. Theoretical analysis and simulation results verify the good performance of the two ameliorated algorithms.
作者 季正燕 陈辉 张佳佳 陆晓飞 JI Zhengyan;CHEN Hui;ZHANG Jiajia;LU Xiaofei(Air Force EarlyWarning Academy,Wuhan 430019, China)
机构地区 空军预警学院
出处 《空军预警学院学报》 2017年第1期5-10,共6页 Journal of Air Force Early Warning Academy
关键词 稀疏重构 解相干 正交匹配追踪算法 奇异值分解算法 sparse reconstruction de-coherence orthogonal matching pursuit (OMP) algorithm singular value decomposition (SVD) algorithm
  • 相关文献

参考文献2

二级参考文献30

  • 1StephenB,LievenV.凸优化[M].王书宁,许望,黄晓霖,译.北京:清华大学出版社,2013:149-153. 被引量:5
  • 2CHEN S S, DONOHO D L , SAUNDERS M A. Atomic Decomposition by Basis Pursuit [ J ]. SIAM Review, 2001, 43(1) : 129-159. 被引量:1
  • 3GORODNITSKY I F, RAO B D. Sparse Signal Recon- struction from Limited Data Using FOCUSS: A Re- weighted Minimum Norm Norm Algorithm [ J ]. IEEE Transactions on Signal Processing, 1997, 45 ( 3 ) : 600 -616. 被引量:1
  • 4HYDER M M, MAHATA K. Direction of Arrival Esti- mation Using a Mixed 12,0 Norm Approximation [ J]. IEEE Transactions on Signal Processing, 2010, 58 ( 9 ) : 4646 -4655. 被引量:1
  • 5PANAHI A, VIBERG M. Fast LASSO Based DOA Tracking [ C ] //4th IEEE International Workshop on Computational Advances in Muhi-Sensor Adaptive Pro- cessing, 2011 : 397-400. 被引量:1
  • 6MALIOUTOV D, CETIN M, WILLSKY A S. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays [ J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 7STOICA P, BABU P, LI J. SPICE: A Sparse Covari- ance-Based Estimation Method for Array Processing [ J]. IEEE Transactions on Signal Processing, 2011, 59 (2) : 629-638. 被引量:1
  • 8YIN Ji-hao, CHEN Tian-qi. Direction-of-Arrival Esti- mation Using a Sparse Representation of Array Covari- ance Vectors [ J]. IEEE Transactions on Signal Process- ing, 2011, 59(9) : 4489-4494. 被引量:1
  • 9JEFFRIES D J, FARRIER A J. Asymptotic Results for Eigenvector Methods[ J]. IEEE Proceedings on Commu- nications, Radar and Signal Processing, 1985, 132(7) : 589-594. 被引量:1
  • 10KAVEH M, BARABELL A J. The Statistical Perform- ance of the MUSIC and the Minimum-Norm Algorithms in Resolving Plane Waves in Noise [ J ]. IEEE Transac- tions on Acoustics, Speech, and Signal Processing, 1986, 34(4): 331-341. 被引量:1

共引文献21

同被引文献11

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部