摘要
手势是人机交互的重要手段之一。基于视觉的手势识别具有非接触式交互的特点,在人工智能领域得到越来越广泛的应用。然而,受到传统二维光学摄像头的限制,采集到的手势图像质量极易受到光照和杂散背景的影响,这给手势的提取带来了重大挑战,严重制约了基于视觉的手势识别的实用化进程。近年来,深度摄像技术的兴起,为解决上述问题带来了新的机遇。在深度数据的辅助下,基于视觉的手势识别新方法层出不穷,识别的准确度不断提升,有力地促进了基于视觉的手势识别系统的实用化进程。在此背景下,从数据的角度出发,分深度数据的获取、常用手势数据集和基于深度数据的识别方法 3个方面介绍目前基于深度数据的手势识别研究的最新进展,并对其未来发展做了进一步的展望。
Hand gesture is one of the most important means in human-computer interaction.Due to the characteristics of non-contact interaction,vision-based hand gesture recognition has been more and more widely used in the area of artificial intelligence.However,due to the restriction of the conventional 2D optical camera,the quality of collected gesture images is easily affected by the light conditions and cluttered backgrounds,which is a major challenge in hand gesture extraction,and severely restricts the practical application of vision-based hand gesture recognition.In recent years,the emergence of depth camera technologies has brought new opportunities to address the above problems.With the help of depth data,new vision-based hand gesture recognition approaches are emerging in an endless stream,and the recognition accuracy is steadily improved,which effectively promotes the practical application of vision-based hand gesture recognition.In this context,from the data angle,we reviewed the latest de.velopments of the depth data based hand gesture recognition from three aspects:depth data acquisition,common hand gesture datasets and depth data based hand gesture recognition methods,and make fore.casts on its future developments.
作者
陈红梅
赖重远
张洋
胡华桦
赵维胜
CHEN Hongmei;LAI Zhongyuan;ZHANG Yang;HU Huahua;ZHAO Weisheng(Institute for Interdisciplinary Research,Jianghan University,Wuhan 430056,Hubei,China)
出处
《江汉大学学报(自然科学版)》
2018年第2期101-108,共8页
Journal of Jianghan University:Natural Science Edition
基金
国家自然科学基金资助项目(61501208)
湖北省高等学校优秀中青年科技创新团队计划项目(T201828)
湖北省大学生创新创业训练计划资助项目(201711072041)
江汉大学高层次人才科研启动经费资助项目(3003-06000040)
关键词
手势识别
深度数据
深度摄像头
手势数据集
hand gesture recognition
depth data
depth camera
hand gesture dataset