期刊文献+

基于单振元超声传感器的手势识别系统 被引量:1

Gesture recognition system based on single vibration element ultrasonic sensor
下载PDF
导出
摘要 手势识别是人机接口应用的一个重要场景,当前的手势识别方法大多基于表面肌电信号(s EMG)。为了探索新的传感方式,设计了一种新颖的基于超声传感器的手势识别系统。系统利用多个布置在前臂的单振元超声传感器检测肌肉界面的回波信息,对其进行特征提取和模式识别,识别手腕和手指的动作。实验结果表明:系统对于手指精细动作有良好的识别效果,5个手指动作的平均识别率为(91.1±4.73)%。 Gesture recognition is one of the most important scenarios in human-machine interface application,and present methods are generally based on surface electro myogram( s EMG) signals. In order to explore new sensing mode,a novel gesture recognition system based on ultrasonic sensor is designed. Sensors are placed on forearm to detect echo information of muscle interface,so as to carry out character exraction and pattern recognition and wrist and finger motions can be recognized. Experimental results show that the system has good recognition effect on fine motion of finger,average recognition rate of five fingers motion is( 91. 1 ± 4. 73) %.
出处 《传感器与微系统》 CSCD 2018年第2期80-82,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51575338)
关键词 超声传感器 人机接口 手势识别 ultrasonic sensor human-machine interface gesture recognition
  • 相关文献

参考文献5

二级参考文献93

  • 1陈卉.Bland-Altman分析在临床测量方法一致性评价中的应用[J].中国卫生统计,2007,24(3):308-309. 被引量:217
  • 2Goodrich M A, Schultz A C. Human-robot interaction: a survey. Foundations and Trends in Human-Computer Inter- action, 2007, 1(3): 203-275. 被引量:1
  • 3Nam Y, Koo B, Cichocki A, Choi S. GOM-face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Transactions on BiomedicM Engineering, 2014, 61(2): 453-462. 被引量:1
  • 4Artemiadis P. EMG-based robot control interfaces: past present and future. Advances in Robotics ~z Automation 2012, 1(2): 1-3. 被引量:1
  • 5Ngeo J G, Tamei T, Shibata T. Continuous and simul- taneous estimation of finger kinematics using inputs from an EMCl-to-muscle activation model. Journal of NeuroEngi- neering and Rehabilitation, 2014, 11:122. 被引量:1
  • 6Chowdhury R H, Reaz M B I, Ali M A B, Bakar A A A, Chellappan K, Chang T G. Surface electromyography sig- nal processing and classification techniques. Sensors, 2013, 13(9): 12431-12466. 被引量:1
  • 7Ahsan M R, Ibrahimy M I, Khalifa O O. EMG signal classifi- cation for human computer interaction: a review. European Journal of Scientific Research, 2009, 33(3): 480-501. 被引量:1
  • 8Ison M, Artemiadis P. Multi-directional impedance control with electromyography for compliant human-robot interac- tion. In: Proceedings of the 2015 International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015. 416-421. 被引量:1
  • 9Farina D, Merletti R, Enolau R M. The extraction of neural strategies from the surface EMG. Journal of Applied Phys- iology, 2004, 96(4): 1486-1495. 被引量:1
  • 10De Luca C J. Imaging the Behavior of Motor Units by De- composition of the EMG Signal, Boston, MA, USA: Delsys Inc.. 2008. 被引量:1

共引文献120

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部