摘要
针对多功能农用机器人路径规划问题,提出禁忌搜索算法(TSA)、模拟退火算法(SAA)、遗传算法(GA)、蚁群算法(ACO)等4种路径搜索方法。为测试算法实际效果,以4种不同规格环境模型为研究背景,以距离最短、程序耗时最少、收敛代数最小为评价指标,运用Matlab软件对算法规划路径过程进行仿真测试。结果表明,4种算法均能为农用机器人规划出距离最短的优化路径;在作物种植区节点规模较小环境下,与其他3种算法相比,蚁群算法具有较强的全局搜索能力,且不易陷入局部最优;在作物种植区节点规模较大环境下,遗传算法全局搜索能力优于其他算法,可通过增大种群数量和增加收敛代数获取最优路径。
出处
《江苏农业科学》
2018年第5期199-203,共5页
Jiangsu Agricultural Sciences
基金
国家自然科学基金(编号:51405246)
江苏省产学研联合创新资金(编号:BY2014081-07)
江苏省南通市重点实验室项目(编号:CP2014001)