期刊文献+

基于箱粒子PHD滤波的多目标视频跟踪方法 被引量:3

Box Particle Probability Hypothesis Density Filter for Multi-target Visual Tracking
下载PDF
导出
摘要 针对粒子滤波运算量大的问题,提出一种基于箱粒子概率假设密度(Box-PHD)滤波的多目标视频跟踪方法.首先给出一种快速运动目标检测算法,通过阈值自动选取的帧差分法得到目标质心并作为量测,然后经箱粒子PHD滤波预测更新后,及时修正检测偏差实现多目标的跟踪和目标数目的估计;最后为所提算法设计了航迹识别步骤,通过颜色特征与纹理特征作为相似性度量,从而实现航迹识别,弥补了PHD滤波无法区分目标的不足.利用目标的特征区分出每个目标的航迹,同时进一步剔除了目标状态集中的杂波,保证了跟踪精度.箱粒子PHD滤波器不仅可以解决量测不确定性的问题,同时可以降低复杂度,减小运算量.实验表明,文中算法可以实现目标新生、消失、合并和分裂等复杂情况下的多目标视频跟踪,并实时区分不同目标的航迹,在保证跟踪效果的同时提高了实时性. Box particle probability hypothesis density(BP-PHD)filter for multi-target visual tracking is proposed to improve the computation efficiency compared to the Sequential Monte Carlo probability hypothesis density(SMC-PHD)filter.A fast moving target detection algorithm is given firstly to get the target’s centroid as the measurement by using threshold automatically select frame difference method.Then after the prediction and updating of the box particle PHD filter,the possible deviation of the detection results are corrected,so the target tracking and estimation of targets’number can be realized.Finally,the algorithm of track recognition is designed through the color features and texture features as similarity measure.the algorithm of track recognition is able to compensate the insufficiency of PHD filter.It can distinguish the target track by using the characteristics of the target,and further eliminate the clutter in the target state sets which ensure the tracking accuracy.BP-PHD filter can solve the problems of uncertain measurements and decrease the computational cost.Experiments show that the proposed algorithm can achieve good performance in multi-target video tracking whenever the targets appear,disappear,merge or split,and distinguish the track of different target in real time.
作者 程慧 宋骊平 李翠芸 Cheng Hui;Song Liping;Li Cuiyun(School of Electronic Engineering,Xidian University,Xi’an 710071)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第2期282-288,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61372003) 国家自然科学基金青年项目(61301289)
关键词 箱粒子 概率假设密度 航迹识别 多目标跟踪 box particle probability hypothesis density track recognition multi-target tracking
  • 相关文献

参考文献4

二级参考文献53

共引文献60

同被引文献40

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部