期刊文献+

基于多级颜色累积和纹理融合的目标跟踪算法 被引量:2

Object Tracking Algorithm Based on Multistep Color Accumulation and Texture Fusion
下载PDF
导出
摘要 在目标跟踪中,目标颜色变化或相似颜色背景干扰会导致算法的鲁棒性较差。为解决该问题,提出一种基于多级颜色累积和纹理融合的目标跟踪算法。将算法分为颜色与纹理特征提取、目标与背景特征相似度判断2个子过程,子过程交替执行,在目标颜色发生变化时,利用感兴趣区域帧差法对目标进行再定位,提取多级颜色模板,并将其累积在原模板之上。实验结果表明,该算法的平均跟踪误差约为基于颜色-纹理算法的1/2、为单视觉特征跟踪算法的1/3。 Aiming at several cases existing in the object tracking algorithm, such as failure happens when the object's appearance changes or when the target and background are similar, an object tracking algorithm based on multistep color accumulation and texture fusion is proposed in this paper. The whole tracking algorithm can be divided into two parts: color and texture feature extracting and target and background's similarity judging, in the tracking process those two parts run by turns according to different cases. When the object's appearance changes, the Region of Interest(ROI) frame difference is used to compute the center of the target again, extracts multistep color model and accumulats it to the old one. Experimental results show that the average tracking error of this algorithm is half of the algorithm based on color-texture and one third of single visual feature tracking algorithm.
出处 《计算机工程》 CAS CSCD 2013年第7期209-213,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61071168) 安徽省科技攻关计划科技强警专项基金资助项目(1101b0403030) 安徽大学青年科学研究基金资助项目(2009A1)
关键词 多级颜色累积 局部二值模式 相似度函数 感兴趣区域 多特征融合 目标跟踪 multistep color accumulation Local Binary Pattem(LBP) similarity function Region of Interest(ROI) multi-feature fusion object tracking
  • 相关文献

参考文献12

  • 1Allen J G, Jin J S. Mean Shift Object Tracking for a SIMD Computer[C]//Proc. of the 3rd International Conference on Information Technology and Applications. Washington D. C., USA: IEEE Press, 2005. 被引量:1
  • 2Cheng Y. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799. 被引量:1
  • 3David E, Erich B, Daniel K. Fast and Robust CAMShift Tracking[J]. IEEE Computer Society, 2010, 10(3): 9-16. 被引量:1
  • 4安国成,张凤军,王宏安,戴国忠.多窗口目标跟踪算法[J].计算机研究与发展,2011,48(11):2023-2030. 被引量:7
  • 5Wang Junqiu, Yasushi Y. Integrating Color and Shape-texture Features for Adaptive Real-time Object Tracking[J]. IEEE Transactions on Image Processing, 2008, 17(2): 235-240. 被引量:1
  • 6李冠彬,吴贺丰.基于颜色纹理直方图的带权分块均值漂移目标跟踪算法[J].计算机辅助设计与图形学学报,2011,23(12):2059-2066. 被引量:49
  • 7Leichter I, Lindenbaum M, Rivlin E. Meanshift Tracking with Multiple Reference Color Histograms[J]. Computer Vision and Image Understanding, 2010, 114(3): 400-408. 被引量:1
  • 8Adam A, Rivlin E, Shimshoni I. Robust Fragments Based Tracking Using the Integral Histogram[J]. IEEE Computer Society, 2006, 10(3): 798-805. 被引量:1
  • 9尹宏鹏,柴毅,匡金骏,阳小燕.一种基于多特征自适应融合的运动目标跟踪算法[J].光电子.激光,2010,21(6):917-923. 被引量:20
  • 10Ojala T, Valkealahti K, Oja E, et al. Texture Discrimination with Multi-dimensional of Signed Gray Level Differences[J]. Pattern Recognition, 2001, 34(3): 727-739. 被引量:1

二级参考文献33

共引文献73

同被引文献25

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Smeulders A, Chu D, Cucchiara R, et al. Visual Tracking: An Experimental Survey [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36 ( 7 ) : 1442-1468. 被引量:1
  • 3Yang Hanxuan, Shao Ling, Zheng Feng, et al. Recent Advances and Trends in Visual Tracking : A Review [ J]. Neurocomputing ,2011,74 ( 18 ) :3823-3831. 被引量:1
  • 4Zhao Guoying, Pietikainen M. Dynamic Texture Recogni- tion Using Local Binary Patterns with an Application to Facial Expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6) :915-928. 被引量:1
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) : 564-577. 被引量:1
  • 6Avidan S. SuppOrt Vector Tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26 (8) : 1064-1072. 被引量:1
  • 7Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks [ J ]. Science, 2006,313 ( 5786 ) : 504-507. 被引量:1
  • 8Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets [ J ]. Neural Com- putation, 2006,18 ( 7 ) : 1527-1554. 被引量:1
  • 9Krizhevsky A, Sutskever I, Hinton G E. Image Net Classi- fication with Deep Convolutional Neural Networks E C ]// Proceedings of NIPS' 12. South Lake Tahoe,USA: [ s. n. ] , 2012:215-222. 被引量:1
  • 10Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[ C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA :IEEE Press ,2014:269-275. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部