期刊文献+

喷嘴数和温比对旋流冷却流动和传热特性的影响 被引量:4

Effects of Nozzle Numbers and Temperature Ratios on Flow and Heat Transfer Characteristics of Vortex Cooling
下载PDF
导出
摘要 针对喷嘴数和温比对叶片前缘旋流冷却特性影响的问题,根据实际燃气轮机前缘结构进一步完善了旋流冷却模型,建立了含有进气腔室的旋流腔结构,采用数值模拟方法分析了喷嘴数和温比对旋流冷却特性的影响。研究时保持进口雷诺数和靶面温度不变,仅改变喷嘴数和温比。研究结果表明:进气腔室的引入使得喷嘴冷气沿流动方向逐渐增加。随着喷嘴数增加,喷嘴冷气流速降低,压力系数增加,流阻系数减小,换热强度降低但均匀性提高,综合换热因子增大。随着温比增加,喷嘴冷气流速增加,流阻系数减小,靶面热流密度降低,换热强度提高,综合换热因子增大。对于含有进气腔的叶片前缘冷却结构,推荐选取喷嘴数为6,温比范围为0.6~0.7。 Aiming at the influences of the number of nozzles and temperature ratio on vortex cooling characteristics of gas turbine blade leading edge,a coolant chamber was added to establish a more reasonable vortex cooling configuration.Numerical method was used to investigate the flow and heat transfer behavior.The inlet Reynolds number and target temperature remained constant while the number of nozzles and temperature ratio were changed in the research.Results showed that the mass flow of air from nozzles increases along the flow direction with the introduction of coolant chamber.As the number of nozzles increases,the velocity of nozzle air,the friction coefficient and the heat transfer intensity decrease while the pressure coefficient,the uniformity of heat transfer intensity distribution and the thermal performance factor increase.As temperature ratio increases,the velocity of air from nozzles,the heat transfer intensity and the thermal performance factor increase,while the friction coefficient and the target heat flux decrease.For the gas turbine blade leading edge with the coolant chamber,the number of nozzles N=6and the temperature ratio0.6-0.7are recommended.
作者 范小军 邹佳生 周源远 李亮 FAN Xiaojun;ZOU Jiasheng;ZHOU Yuanyuan;LI Liang(School of Energy and Power Engineering,X i'an Jiaotong University,X i'an 710049,China;;Shaanxi Engineering Laboratory of Turbomachinery and Power Equipm ent,X i'an 710049,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第3期19-24,33,共7页 Journal of Xi'an Jiaotong University
关键词 旋流冷却 进气腔 喷嘴数目 温比 vortex cooling coolant chamber number of nozzles temperature ratio
  • 相关文献

参考文献2

二级参考文献15

  • 1KREITH F, MARGOLIS D. Heat transfer and fric- tion in turbulent vortex flow [J]. Applied Scientific Research: Section A, 1959, 8(1): 457-473. 被引量:1
  • 2LIGRANI P M, HEDLUND C R, THAMBU R, et al. Flow phenomena in swirl chambers[J]. Experi- mental in Fluids, 1998, 24(3): 254-264. 被引量:1
  • 3SEGURA D, ACHARYA S. Internal cooling using novel swirl enhancement strategies in a slot shaped sin- gle pass channel[C]//Proceedings of the 2010 ASME Turbo Expo. New York, USA: ASME, 2010: 635- 644. 被引量:1
  • 4GLEZER B, MOON H K, O'CONNELL T. A novel technique for lhe internal blade cooling [C]// Proceed- ings of the 1996 ASME Turbo Expo. New York, USA: ASME, 1996: V004T09A015. 被引量:1
  • 5HEDLUND C R, LIGRANI P M, GLEZER B, et al. Heat transfer in a swirl chamber at different tempera- ture ratios and Reynolds numbers[J]. International Journal of Heat and Mass Transfer, 1999, 42 (22) : 4081-4091. 被引量:1
  • 6HEDLUND C R, LIGRANI P M, MOON H K, et al. Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling[J]. Journal of Turbomachinery, 1999, 121(4): 804-813. 被引量:1
  • 7HEDLUND C R, LIGRANI P M. Local swirl cham- ber heat transfer and flow structure at different Reyn- olds numbers[J]. Journal of Turbomachinery, 2000, 122(2): 375-385. 被引量:1
  • 8LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling pas- sage with tangential injection [C] // Proceedings of the 2006 ASME Turbo Expo. New York, USA: ASME, 2006: 325-340. 被引量:1
  • 9DU Changhe, LI Liang, WU Xin, et al. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge [J]. Applied Thermal Engineering, 2016, 93: 1020- 1032. 被引量:1
  • 10LIU Zhao, L1 Jun, FENG Zhengping. Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade [C] // Proceedings of the 2011 ASME Turbo Expo. New York, USA: ASME, 2011: 1495- 1504. 被引量:1

共引文献14

同被引文献22

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部