摘要
为了探究旋流冷却的热流固特性,建立了旋流冷却热流固耦合模型和纯流体模型,在相同边界条件下对两种模型的旋流冷却性能进行了对比研究,同时分析了热流固耦合模型温度场与结构场的分布特性。研究结果表明:固体壁面导热对冷气的流动影响较小,但对流体区域的换热会产生一定影响,热流固耦合模型下靶面的换热强度分布更为均匀,沿冷气流动方向高低换热区域的换热强度差异逐渐减小,各喷嘴进口对应高换热区域的换热强度沿流动方向逐渐增大,热流固耦合模型下靶面的平均换热强度比纯流体模型减小了5.05%;固壁导热对靶面温度有着显著影响,热流固耦合模型靶面温度分布比纯流体模型更为均匀;热流固耦合模型固体区域的整体温度沿着冷气流动方向逐渐升高,整体应力则沿冷气流动方向先增大后减小,靠近叶根和叶顶的区域出现应力集中;整体应变的变化趋势与整体应力变化趋势类似,但在固体传热面上,中部区域出现低应变区域。
To analyze the thermal-fluid-structure characteristics of swirl cooling,a thermal-fluid-structure coupled model and a fluid model were established.The swirl cooling performance for two models was compared under the same boundary conditions.The temperature and structure characteristics of the thermal-fluid-structure coupled model were analyzed.Results showed that the solid wall heat transfer has little influence on the cooling air flow field,but the target wall heat transfer intensity is affected by the solid wall heat transfer to some extent.The target wall heat transfer intensity distribution for the thermal-fluid-structure coupled model is more uniform,while the solid wall heat transfer intensity between the high and low heat transfer regions decreases along the cooling air flow direction gradually.The heat transfer intensity of the high heat transfer region corresponding to swirl nozzle inlets increases along the cooling air flow direction.The target wall average heat transfer intensity for the thermal-fluid-structure coupled model has a 5.05%reduction compared with the fluid model.The target wall temperature is obviously influenced by the solid wall heat transfer.The target wall temperature of the thermal-fluid-structure coupled model is more uniform than the fluid model.The solid region’s overall temperature of the thermal-fluid-structure coupled model increases gradually along the flow direction of the cooling air.The overall stress increases first and then decreases along the same direction,and the stress concentration occurs in the area near the hub and shroud.The overall strain has a similar changing trend with the overall stress,but a low strain region appears in the middle region on the solid heat transfer surface.
作者
周源远
范小军
李亮
李健武
符阳春
ZHOU Yuanyuan;FAN Xiaojun;LI Liang;LI Jianwu;FU Yangchun(School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment,Xi’an 710049,China)
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2020年第1期135-142,共8页
Journal of Xi'an Jiaotong University
基金
国家科技重大专项资助项目(2017-0009-0010)
关键词
热流固耦合
旋流冷却
固壁导热
thermal-fluid-structure coupling
swirl cooling
solid wall heat transfer