摘要
Social computing, a cross science of computational science and social science, is affecting people’s learning, work and life recently. Face recognition is going deep into every field of social life, and the feature extraction is particularly important. Linear Discriminant Analysis (LDA) is an effective feature extraction method. However, the traditional LDA cannot solve the nonlinear problem and small sample problem existing in high dimensional space. In this paper, the method of the Support Vector-based Direct Discriminant Analysis (SVDDA) is proposed. It incorporates SVM algorithm into LDA, extends SVM to nonlinear eigenspace, and optimizes eigenvalue to improve performance. Moreover, this paper combines SVDDA with the social computing theory. The experiments were tested on different face datasets. Compared with other existing methods, SVDDA has higher robustness and optimal performance.
出处
《国际计算机前沿大会会议论文集》
2016年第1期33-34,共2页
International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)