期刊文献+

A SVM-Based Feature Extraction for Face Recognition

下载PDF
导出
摘要 Social computing, a cross science of computational science and social science, is affecting people’s learning, work and life recently. Face recognition is going deep into every field of social life, and the feature extraction is particularly important. Linear Discriminant Analysis (LDA) is an effective feature extraction method. However, the traditional LDA cannot solve the nonlinear problem and small sample problem existing in high dimensional space. In this paper, the method of the Support Vector-based Direct Discriminant Analysis (SVDDA) is proposed. It incorporates SVM algorithm into LDA, extends SVM to nonlinear eigenspace, and optimizes eigenvalue to improve performance. Moreover, this paper combines SVDDA with the social computing theory. The experiments were tested on different face datasets. Compared with other existing methods, SVDDA has higher robustness and optimal performance.
出处 《国际计算机前沿大会会议论文集》 2016年第1期33-34,共2页 International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)
  • 相关文献

参考文献4

二级参考文献33

  • 1王飞跃.社会计算——科学、技术与人文的数字化动态交融[J].中国基础科学,2005,7(5):5-12. 被引量:41
  • 2霍颖瑜,王晓峰.一种新的SVM多类分类算法[J].佳木斯大学学报(自然科学版),2006,24(4):476-478. 被引量:4
  • 3GUO Yi, SHAO Zhi-qing, HUA Nan. Automatic text categorization based on content analysis with cognitive situation models [ J]. Infor- mation Sciences,2010,180(5) : 613-630. 被引量:1
  • 4BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation [ J ]. Journal of Machine Learning Research, 2003,3(3) : 993-1022. 被引量:1
  • 5GALLIGAN M C, SALDOCA R,CAMPBELL M P,et al. Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution [ J ]. BMC Bioinformatics, 2013,14 ( 1 ) : 155. 被引量:1
  • 6GRIFFITHS T. Gibbs sampling in the generative model of latent dirichlet allocation [ D]. Stanford: Stanford University, 2002. 被引量:1
  • 7BOYD-GRABER J L, BLEI D M, ZHU Xiao-jin. A topic model for word sense disambiguation [ C ]//Proc of Joint Conference on Empiri- cal Methods in Natural Language Processing and Computational Natu- ral Language Learning. 2007 : 1024-1033. 被引量:1
  • 8CHANG C C, LIN C J. LIBSVM: a library for support vector ma- chines [ J]. ACM Trans on Intelligent Systems and Technology, 2011,2(3) : 27-65. 被引量:1
  • 9JOACHIMS T. A support vector method for multivariate performance measures [ C ]//Proc of the 22nd International Conference on Machine Learnimr. New York :ACM Press.2005 : 377-384. 被引量:1
  • 10ZHANG Yan-kun, HONG Chu-yang, WANG C. An efficient real time rectangle speed limit sign recognition system[ C ]//Proc of Intelligent Vehicles Symposium. 2010 : 34-38. 被引量:1

共引文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部