期刊文献+

Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase 被引量:4

Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase
下载PDF
导出
摘要 This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial p H value, initial Fe^(2+) concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92 wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield(H_2SO_4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11 wt% greater than the chemical leaching yield. The Community Bureau of Reference(BCR) sequential extraction results revealed that 88.62 wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44 wt%. The X-ray diffraction(XRD) and Fourier transform infrared(FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria. This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial p H value, initial Fe^(2+) concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92 wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield(H_2SO_4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11 wt% greater than the chemical leaching yield. The Community Bureau of Reference(BCR) sequential extraction results revealed that 88.62 wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44 wt%. The X-ray diffraction(XRD) and Fourier transform infrared(FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第3期253-261,共9页 矿物冶金与材料学报(英文版)
基金 financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2015ZX07205003)
关键词 BIOLEACHING STONE coal BCR-sequential extraction VANADIUM SPECIATION MINERAL phase bioleaching stone coal BCR-sequential extraction vanadium speciation mineral phase
  • 相关文献

参考文献3

二级参考文献26

共引文献16

同被引文献47

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部