期刊文献+

基于局部感受野和半监督深度自编码的肺结节检测方法 被引量:4

A Pulmonary Nodules Detection Based on Local Receptive Field and Semi-supervised Deep Autoencoder
下载PDF
导出
摘要 深度学习在肺部影像方面的研究主要集中于肺部CT图像。对肺结节的快速准确检测是肺部疾病治疗的关键步骤。结节检测本身就是一项具有挑战性的工作,且已有的研究均很难得到较高的检测率。针对这样的问题,提出一种改进的深度半监督稀疏自编码的肺结节检测方法。首先,采用局部感受野对肺结节图像进行多层特征提取。然后,利用半监督稀疏自编码自主学习肺部影像中的结节特征。最后,融合多种临床信息实现对肺结节的准确检测。实验结果表明,该方法可以达到准确率90.14%,敏感度89.67%和平均检测率96.64%,明显优于其他方法检测性能,更适用于肺结节的精准检测。 Deep learning in pulmonary imaging research mainly concentrated on CT image.And the key step of pulmonary disease treatment are how to make pulmonary nodules detection fast and exactly.The detection of pulmonary is a challenging task,and existing research is difficult to get a higher rate.For this problem,animproved deep sparse autoencoder pulmonary nodule recognized method is proposed.First,analysis local multilayer features.Second,semi-supervised sparse autoencoder is used to automatically obtain the nodular features lung images.Finally,achieve accurate identification of pulmonary nodules by integrating a variety of clinical information.The experimental results show that the method can achieve accuracy90.14%,sensitivity89.67%,and average recognition rate96.64%,.It’s better than other methods of identification performance and moresuitable for accurate identification of pulmonary nodules.
作者 赵鑫 强彦 强梓林 赵涓涓 杜晓平 Zhao Xin;Qiang Yan;Qiang Zilin;Zhao Juanjuan;Du Xiaoping(College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024,P. R. China;Shanxi coal Central Hospital, Taiyuan 030012,P. R. China)
出处 《科学技术与工程》 北大核心 2017年第33期125-130,共6页 Science Technology and Engineering
基金 国家自然科学基金(61373100) 虚拟现实技术与系统国家重点实验室基金(BUAA-VR-16KF13) 山西省回国留学人员科研资助项目(2016-038)资助
关键词 稀疏自编码 半监督 局部感受野 肺结节辅助检测 深度学习 sparse autoencoder semi-supervised local receptive field pulmonary nodules aided detection deep learning
  • 相关文献

参考文献2

二级参考文献22

  • 1KONONENKO I. Inductive and Bayesian learning in medical diagnosis[J].Applied Artificial Intelligence an International Journal,1993,7(4):317-337. 被引量:1
  • 2ASTION M L,WENER M H,THOMAS R G,et al. Application of neural networks to the classification of giant cell arteritis[J].Arthritis & Rheumatism,1994,37(5):760-770. [3] BETECHUOH B L,ARWALA T,TETTEY T. Autoencoder networks for HIV classification[J].Current Science,2006,91(11):1467-1473. 被引量:1
  • 3VINCENT P,LATOCHELLE H,LAJOIE I,et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].The Journal of Machine Learning Research,2010,2010(9999):3371-3408. 被引量:1
  • 4VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting and composing robust features with denoising autoencoders[C] //Proc of the 25th International Conference on Machine Learning. New York:ACM Press,2008:1096-1103. 被引量:1
  • 5DOMINGOS P. Metacost:a general method for making classifiers cost-sensitive[C] //Proc of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press,1999:155-164. 被引量:1
  • 6BENGIO Y. Learning deep architectures for AI[J].Foundations and trends in Machine Learning,2009,2(1):1-127. 被引量:1
  • 7HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. 被引量:1
  • 8BENGIO Y,LAMBLIN P,POPOVICI D,et al. Greedy layer-wise training of deep networks[J].Advances in Neural Information Processing Systems,2007,2007(19):153-160. 被引量:1
  • 9LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. 被引量:1
  • 10BENGIO Y,DELALLEAU O. On the expressive power of deep architectures[C] //Algorithmic Learning Theory. Berlin:Springer,2011:18-36. 被引量:1

共引文献10

同被引文献21

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部