期刊文献+

采用改进遗传算法优化FIR数字滤波器设计 被引量:10

Research on design of FIR filter based on improved genetic algorithm
下载PDF
导出
摘要 FIR数字滤波器的最优化设计可以抽象成一个多维连续函数求极值的问题,因此可以采用遗传算法求解。针对传统遗传算法存在的容易早熟收敛的问题,提出一种改进策略,从交叉变异的概率和算子两方面对算法进行改进,并通过测试函数验证了改进策略的可行性。分别在最小二乘(LS)、最大误差最小化(MM)和均方误差最小化(MMSE)准则下,采用改进遗传算法进行FIR数字低通滤波器最优化设计,实验结果显示在不同优化准则下设计的滤波器都表现出了良好的性能,证明了改进算法的通用性和有效性。 The optimal design of finite impulse response filter can be abstracted into a problem of calculating the extremum of multidimensional continuous function,so it can be solved by genetic algorithm.Because the traditional genetic algorithm is easy to fall into local solution,it proposes a new strategy to improve the algorithm in the probability and operator of crossover and mutation,and it proves to be feasible by trial function.Under the Least Squares(LS),Minimax(MM)and Minimum Mean Square Error(MMSE)criteria,it realizes the optimized design of digital FIR low pass filters based on the improved genetic algorithm.The experimental results show that the filters designed under different optimality criteria have good performance,and the versatility and effectiveness of the improved genetic algorithm are proved as well.
作者 孙田雨 史峥 SUN Tianyu;SHI Zheng(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第17期108-111,172,共5页 Computer Engineering and Applications
关键词 数字滤波器 改进遗传算法 交叉变异 优化设计 digital filter improved genetic algorithm crossover and mutation optimized design
  • 相关文献

参考文献8

二级参考文献77

  • 1李辉,张安,赵敏,徐琦.粒子群优化算法在FIR数字滤波器设计中的应用[J].电子学报,2005,33(7):1338-1341. 被引量:37
  • 2孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 3Xu W B, Sun J. Adaptive parameter selection of quantum-behaved particle swarm optlmization on global level [C] // Proceedings of International Conference of Intelligent Computing, 2005:420 - 428. 被引量:1
  • 4Bergh F V. An analysis of particle swarm optimizers [D]. University of Pretoria , South Africa, Nov 2001. 被引量:1
  • 5Xu D J, Daley M L. Design of optimal digital filter using a parallel genetic algorithm [J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1995, 42 (10): 673-675. 被引量:1
  • 6Oner M. A genetic algorithm for optimization of linear phase FIR filters coefficients [C]//Proceedings of the Asilomar Conference on Signals, Systems and Computers, 1998 : 1397 - 1400. 被引量:1
  • 7Langlois J M P. Design of linear phase FIR filters using particle swarm optimization [C]///Proceedings of 22nd Biennial Symposium on Communications, Kingston, Ontario, Canada, 2004. 被引量:1
  • 8Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior [C] // Proceedings of Congress on Evolutionary Computation, 2004 : 325 - 331. 被引量:1
  • 9Sun J, Feng B, Xu W B. A global search strategy of quantumbehaved particle swarm optimization [C] // Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, 2004 : 111 - 116. 被引量:1
  • 10Kennedy J, Eberhart R. Particle swarm optimization [C]//Proceedings of IEEE International Conference On Neural Net works, 1995: 1942 - 1948. 被引量:1

共引文献71

同被引文献82

引证文献10

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部