期刊文献+

基于变学习率三角基函数神经网络的4型FIR滤波器设计

Design of the Type-four FIR Filter Based on the Triangle Basis Neural Network with a Variable Learning Rate
下载PDF
导出
摘要 本文提出一种基于变学习率三角基函数神经网络的线性相位4型FIR滤波器设计方法。该方法根据三角基函数神经网络与线性相位4型FIR滤波器幅频特性之间的关系,构建了一种变学习率三角基函数神经网络模型,在神经网络训练过程中引入变学习率算法自调整学习率取值,解决学习率通常依靠经验或试凑法确定带来的不确定性,提高神经网络的学习效率和收敛速度。通过训练神经网络的权值,使设计的FIR滤波器幅频响应与理想幅频响应在整个通带和阻带内的误差平方和最小。文中利用该方法对FIR高通滤波器和带通滤波器进行了优化设计,仿真结果表明了该方法设计FIR滤波器的有效性和优越性。 A novel method of designing the linear phase type-four FIR filter based on the triangle basis neural network with a variable learning rate is presented. According to the relation of the amplitude-frequency characteristics of the linear phase type-four FIR filter and the triangle basis neural network, a triangle basis neural network model with a variable learning rate is built. In the training process of the triangle basis neural network, the value of learning rate is automatically adjusted using the variable learning rate algorithm. This strategy solves the uncertainty that the learning rate usually is en- sured according to the experiences or trial and error methods. The proposed algorithm enhances the learning efficiency and the convergence rate of the neural network. By training the neural network weight, the model makes the squared sum of amplitude-frequency response error between the designed FIR filter and the ideal filter the least in the whole pass band and the cut band. The high-pass filter and band-pass filter are designed using the model in this paper. The simulation results show its availability and good performance in the design of the FIR filter.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第8期141-144,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(50677014 60876022) 高校博士点基金资助项目(20060532016) 教育部新世纪优秀人才支持计划资助项目(NCET-04-0767) 湖南省自然科学基金资助项目(06JJ2024)
关键词 三角基函数 神经网络 变学习率 高通滤波器 带通滤波器 triangle basis function neural network variable learning rate high-pass filter band-pass filter
  • 相关文献

参考文献9

二级参考文献22

  • 1赵瑞杰,赖晓平.带不等式约束的线性相位FIR数字滤波器的Chebyshev设计[J].信号处理,2003,19(z1):21-24. 被引量:6
  • 2李辉,张安,赵敏,徐琦.粒子群优化算法在FIR数字滤波器设计中的应用[J].电子学报,2005,33(7):1338-1341. 被引量:37
  • 3曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 4A.V.奥本海母 杨耀增 等.数字信号处理[M].科学出版社,1986.173-174. 被引量:1
  • 5AV奥本海母 RW谢弗著 董士嘉 杨耀增译.数字信号处理[M].北京:科学出版社,1986.173-174. 被引量:2
  • 6Xu W B, Sun J. Adaptive parameter selection of quantum-behaved particle swarm optlmization on global level [C] // Proceedings of International Conference of Intelligent Computing, 2005:420 - 428. 被引量:1
  • 7Bergh F V. An analysis of particle swarm optimizers [D]. University of Pretoria , South Africa, Nov 2001. 被引量:1
  • 8Xu D J, Daley M L. Design of optimal digital filter using a parallel genetic algorithm [J]. IEEE Transactions on Circuits and Systems Ⅱ: Analog and Digital Signal Processing, 1995, 42 (10): 673-675. 被引量:1
  • 9Oner M. A genetic algorithm for optimization of linear phase FIR filters coefficients [C]//Proceedings of the Asilomar Conference on Signals, Systems and Computers, 1998 : 1397 - 1400. 被引量:1
  • 10Langlois J M P. Design of linear phase FIR filters using particle swarm optimization [C]///Proceedings of 22nd Biennial Symposium on Communications, Kingston, Ontario, Canada, 2004. 被引量:1

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部