期刊文献+

基于灰狼多目标算法的电网碳-能复合流优化调度 被引量:7

Grey Wolf Multi-objective Optimizer for Optimal Carbon-energy Combined-flow
下载PDF
导出
摘要 针对低碳经济发展过程中电网应承担的碳排放责任,本文将实际的潮流和虚拟的碳流结合,通过追溯网损对应的碳排放建立起电网碳-能复合流优化模型,并采用多目标灰狼算法对该模型进行求解。通过在原始灰狼算法中加入Pareto存档、α、β和δ狼选择机制及灰狼的游荡行为,使之能够应用到多目标优化中,并得到分布性能较好的Pareto前沿。最后引入改进TOPSIS法进行折中解选择。IEEE118节点仿真结果表明多目标灰狼算法在电网碳-能复合流优化模型中具有很好的适用性。 Under the consideration of the responsibility for carbon emissions to be borne by power grid during the low-carboneconomic development, this paper proposes a grey wolf multi-objective optimizer( GWMO) to achieve an optimal carbonenergy combined-flow( OCECF), which is based on the combination of the actual energy flow and virtual carbon flow as wellas the trace of the reactive power dispatch of the power grid. The proposed algorithm introduce Pareto archived, α, β and δ wolfselection mechanism and wandering behavior of gray wolf into original grey wolf optimizer to realize a multi-objective optimizationand an excellent distributed Pareto front. Moreover, an improved TOPSIS is adopted to select the compromise solution.IEEE 118-bus system simulation results show that the GWMO for OCECF has a good applicability.
作者 毛森茂 瞿凯平 陈艺璇 程乐峰 余涛 MAO Sen-mao;QU Kai-ping;CHEN Yi-xuan;CHENG Le-feng;YU Tao(Shenzhen Power Supply Bureau, Shenzhen, Guangdong, 518010;Electric Power College, South China University of Technology,Guangzhou, Guangdong 510640)
出处 《新型工业化》 2016年第9期11-17,共7页 The Journal of New Industrialization
基金 中国南方电网科技项目资助(2016规专0009) 国家自然科学基金项目(51177051 51477055)
关键词 碳-能复合流 多目标灰狼算法 PARETO TOPSIS Optimal carbon-energy combined-flow Grey wolf multi-objective optimizer Pareto TOPSIS
  • 相关文献

参考文献11

二级参考文献231

共引文献625

同被引文献83

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部