期刊文献+

基于移动感知的智能手机防盗软件的研究 被引量:2

Research of anti-theft software based on mobile sensing of smartphone
下载PDF
导出
摘要 得益于硬件技术的发展,智能手机感知信息的方式日益丰富。因而以智能手机自带的传感器件为出发点,以移动感知为基础,设计并开发了一款智能手机防盗软件。该软件针对智能手机在生活中的不同使用场景,利用手机自带的加速度传感器、环境光传感器、接近传感器以及手机内部的广播机制,通过分析从周围环境获取的实时数据来判断手机状态是否变化,从而实现不同的防盗模式。其中在通过加速度传感器输出值判断手机状态时,设计了三轴加速度从手机坐标系到参考坐标系的四元数转换算法,以利于客观统一地判断手机的运动状态。此外,通过手机内部短信广播的截获技术来判断设备是否收到短信以及短信内容是否为预设指令,实现对手机的远程控制。目前Android智能手机的市场占有率高达80%,因而以Android手机为例,实现了上述智能手机防盗软件。各项功能经过真机测试,均已达到预期效果。 With the development of hardware technologies, the methods of sensing information by smartphones have been greatly extended. This paper surveys smartphone built-in sensors and designs an anti-theft software based on mobile sensing of smartphone. In consideration of different usage scenarios, different patterns have been designed by using smartphone built-in acceleration sensor, light sensor, distance sensor and smartphone internal broadcasting mechanism. It can alert users by analyzing real-time data and judging the state of smartphone whether meet certain conditions. In the pattern where using the acceleration sensor, it designs coordinate quaternion transform algorithm from the body coordinates to the reference coordinates, in order to objectively determine the state of motion of the smartphone. At the same time, it applies background monitoring techniques to achieve remote control function. Nowadays the Android smartphones are more and more popular, so it develops the software based on Android. Tested on smartphone with Android operating system, the software can achieve anticipative functions.
作者 高嘉伟 王鑫鑫 刘鹏睿 GAO Jiawei;WANG Xinxin;LIU Pengrui(School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Taiyuan 030006, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第24期75-79,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.41401521) 山西省自然科学基金(No.2014021022-2) 2016年山西省高等学校大学生创新创业训练计划项目(No.201610108011) 山西大学第十三期本科生科研训练项目(No.2015013245)
关键词 移动感知 智能手机 防盗 远程控制 mobile sensing smartphone anti-theft remote control
  • 相关文献

参考文献10

二级参考文献244

  • 1姚君兰.入侵检测技术及其发展趋势[J].信息技术,2006,30(4):172-175. 被引量:9
  • 2Hoffman F, Heyer P, Hommel G. Velocity Profile-based Recognition of Dynamic Gestures with Discrete Hidden Markov Models[C] //Proc. of 1997 Gesture Workshop. Gif-sur-Yvette, France: [s. n.] , 1997: 81-95. 被引量:1
  • 3Hinckley K, Pierce J, Sinclair M, et al. Sensing Techniques for Mobile Interaction[C] //Proc. of Conference on User Interface Software and Technology. San Diego, California, USA: [s. n.] , 2000: 91-100. 被引量:1
  • 4Chambers G S, Venkatesh S, West G, et al. Segmentation of Intentional Human Gestures for Sports Video Annotation[C] //Proc. of the 10th International Multimedia Modeling Conference. Brisbane, Australia: [s. n.] , 2004: 124-129. 被引量:1
  • 5Mantyjarvi J, Juha K, Panu K, et al. Enabling Fast and Effortless Customisation in Accelerometer-based Gesture Interaction[C] // Proc. of the 3rd International Conference on Mobile and Ubiquitous Media. Maryland, USA: [s. n.] , 2004: 25-31. 被引量:1
  • 6Benbasat A Y, Paradiso J A. An Inertial Measurement Framework for Gesture Recognition and Applications[C] //Proc. of the International Gesture Workshop on Gesture and Sign Languages in Human-computer Interaction. London, UK: [s. n.] , 2001: 9-20. 被引量:1
  • 7Junker H. Gesture Spotting with Body-worn Inertial Sensors to Detect User Activities[J]. Pattern Recognition, 2008, 41(6): 2010- 2024. 被引量:1
  • 8Duda R O, Hart P E, Stork D G. 模式分类[M]. 李宏东, 姚天翔,译. 北京: 机械工业出版社, 2006. 被引量:1
  • 9Lazer D, Pentland A et al. Computational social science. Science, 2009, 323(5915):721-723. 被引量:1
  • 10Mitchell T M. Mining our reality. Science, 2009, 326 (5960): 1644-1645. 被引量:1

共引文献236

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部