期刊文献+

基于平均邻域最大化的手势识别方法研究 被引量:2

Research of Hand Posture Recognition Method Based on Average Neighborhood Margin Maximization
下载PDF
导出
摘要 根据人机交互中手势控制系统的要求,提出一种基于平均邻域最大化(ANMM)算法的静态手势识别方法。将获得的二值化图像轮廓归一化到固定的解析度,构成多维向量,使用ANMM算法对同质相邻与异质相邻向量进行训练,计算出投影方向矩阵。将样本降维处理后,计算其在降维空间内与同质相邻和异质相邻向量的距离,判别样本所属分类。实验结果证明,该方法对静态手势的识别率可达90%以上。 According to the requirement of hand posture control system in the field of human machine interaction, Average Neighborhood Margin Maximization(ANMM) algorithm is applied to static hand posture and human body posture recognition. It normalizes the binary image contour into a fixed resolution, constitutes a multi-dimensional vector, uses the ANMM algorithm training the homogeneity and heterogeneity neighboring vectors, and then projection direction matrix is calculated. After reducing the dimension of the sample, calculating the distance of the adjacent homogeneity and heterogeneity vectors, the samples are classified. Results show that this algorithm has a recognition rate of 90% for the static hand posture recognition.
出处 《计算机工程》 CAS CSCD 2012年第9期19-20,35,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61103113)
关键词 手势识别 平均邻域最大化 特征提取 相邻同质 相邻异质 降维 hand posture recognition Average Neighborhood Margin Maximization(ANMM) feature extraction adjacent homogeneity adjacentheterogeneity dimension reduction
  • 相关文献

参考文献6

  • 1Erol A,Bebis G,Nicolescu M,et al.Vision-based Hand PoseEstimation:A Review[J].Computer Vision and Image Under-standing,2007,108(1/2):52-73. 被引量:1
  • 2刘蓉,刘明.基于三轴加速度传感器的手势识别[J].计算机工程,2011,37(24):141-143. 被引量:40
  • 3Mann W,Prinz P M.An Investigation of the Need for SignLanguage Assessment in Deaf Education[J].American Annals ofthe Deaf,2006,151(3):356-370. 被引量:1
  • 4刘珠峰,周良,丁秋林.基于隐性马尔可夫模型的手势识别设计和优化[J].计算机应用研究,2011,28(6):2386-2388. 被引量:8
  • 5Sato Y,Bernardin K,Kimura H,et al.Task Analysis Based onObserving Hands and Objects by Vision[C]//Proc.of InternationalConference on Intelligent Robots and Systems.Lausanne,Switzerland:[s.n.],2002. 被引量:1
  • 6Wang Fei,Zhang Changshui.Feature Extraction by Maximizingthe Average Neighborhood Margin[C]//Proc.of IEEE ComputerSociety Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:[s.n.],2007. 被引量:1

二级参考文献16

  • 1孙正兴,冯桂焕,周若鸿.基于草图的人机交互技术研究进展[J].计算机辅助设计与图形学学报,2005,17(9):1889-1899. 被引量:54
  • 2RUBINE D. Specifying gestures by example [ J ]. Computer Graphi- cs, 1991,21 (4) :329-337. 被引量:1
  • 3MARK W. Design and implementation of a stroke interface library [ C ]//IEEE Region 4 Student Paper Contest, 1997. 被引量:1
  • 4SUN Zheng-xing,LIU Wen-yin, PENG Bin-bin,et al. User adaptation for online sketchy shape recognition[ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2004 : 303-314. 被引量:1
  • 5GOLUBITSKY O, WATT S. Online recognition of multi-stroke symbols with orthogonal Series[ C]//Proc of the lOth International Conference on Document Analysis and Recognition. 2009:1265-1269. 被引量:1
  • 6WILLEMS D. Iconic and multi-stroke gesture recognition [ J]. Pattern Recognition, 2009,42 ( 12 ) : 3303- 3312. 被引量:1
  • 7LI X, YEUNG D. On-line handwritten alphanumeric character recogni- tion using dominant points in strokes [ J ]. Pattern Recognition, 1997,30( 1 ) :31-44. 被引量:1
  • 8DERK A, CRAIG B. Hidden Markov model symbol recognition for sketch-based interfaces [ C ]//Proc of AAAI Fall Symposium. 2004 : 15-21. 被引量:1
  • 9Hoffman F, Heyer P, Hommel G. Velocity Profile-based Recognition of Dynamic Gestures with Discrete Hidden Markov Models[C] //Proc. of 1997 Gesture Workshop. Gif-sur-Yvette, France: [s. n.] , 1997: 81-95. 被引量:1
  • 10Hinckley K, Pierce J, Sinclair M, et al. Sensing Techniques for Mobile Interaction[C] //Proc. of Conference on User Interface Software and Technology. San Diego, California, USA: [s. n.] , 2000: 91-100. 被引量:1

共引文献46

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部