期刊文献+

情景感知的移动用户行为转移模式推荐算法 被引量:3

Recommendation algorithm of behavior transfer pattern of mobile user based on context awareness
下载PDF
导出
摘要 针对移动用户行为序列的情景感知特性,提出一种基于情景感知的行为转移模式推荐算法MPRC。该算法首先采用Apriori对用户历史行为数据进行长度为2的频繁模式的挖掘过滤,然后将过滤后的行为数据转换成决策表,采用粗糙集规则提取对决策表进行处理,挖掘情景转移模式,最后通过模式匹配及情景相似性计算进行推荐排序。实验结果证明了该算法在移动环境下的模式挖掘及推荐方面的有效性和较高的准确性。 In view of the context awareness feature of the mobile user’s behavior sequence, this paper proposes a behaviortransfer pattern recommendation algorithm MPRC. This algorithm uses Apriori to filter the data of user’s historical behaviorin order to obtain a frequent pattern with length 2, and then converts these data into the decision tables for using rule extractionmethod of rough set to process the decision tables to mine context awareness transfer pattern. Finally, MPRC uses patternmatching method and contextual similarity calculation to rank the pattern and to make recommendation. Experimentalresults show that this algorithm is more effective and more accurate in user behavior pattern mining and recommendationin mobile environment.
作者 张晓滨 李园园 ZHANG Xiaobin;LI Yuanyuan(College of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第20期163-166,共4页 Computer Engineering and Applications
基金 陕西省教育厅科学研究计划(No.14JK1307)
关键词 情景感知 行为转移模式 情景相似性 context awareness behavior transfer pattern contextual similarity
  • 相关文献

参考文献15

  • 1Agrwal R,Srikan R.Fast algorithms for mining associationrules in large databases[C].Proceedings of the 20th InternationalConference on Very Large Databases.San Francisco:Morgan Kaufmann Publishers,1994:487-499. 被引量:1
  • 2Zhu H,Chen E,Xiong H,et al.Mining mobile user preferencesfor personalized context-aware recommendation[J].ACM Transactions on Intelligent Systems & Technology,2014,5(4):1-27. 被引量:1
  • 3Mehra P.Context-aware computing:beyond search andlocation-based services[J].IEEE Internet Computing,2012,16(2):12-16. 被引量:1
  • 4Perera C,Zaslavsky A,Christen P,et al.Context awarecomputing for the Internet of things:a survey[J].IEEE CommunicationsSurveys & Tutorials,2014,16(1):414-454. 被引量:1
  • 5Chen T S,Chou Y S,Chen T C.Mining user movementbehavior patterns in a mobile service environment[J].IEEE Transactions on Systems Man & Cybernetics PartA Systems & Humans,2012,42(1):87-101. 被引量:1
  • 6曹怀虎,朱建明,潘耘,李海峰.情景感知的P2P移动社交网络构造及发现算法[J].计算机学报,2012,35(6):1223-1234. 被引量:24
  • 7Hosseini-Pozveh M,Nematbakhsh M,Movahhedinia N.A multidimensional approach for context-aware recommendation in mobile commerce[J].International Journal of Computer Science and Information Security,2009,3(1):86-91. 被引量:1
  • 8Baltrunas L,Ludwig B,Peer S,et al.Context relevanceassessment and exploitation in mobile recommender systems[J].Personal & Ubiquitous Computing,2012,16(5):1-20. 被引量:1
  • 9Weng S S,Lin B,Chen W T.Using contextual informationand multidimensional approach for recommendation[J].Expert Systems with Applications,2009,36(2):1268-1279. 被引量:1
  • 10张晓滨,李园园,郭斌.基于情景感知与约束的移动用户序列行为研究[J].计算机工程与应用,2015,51(19):138-140. 被引量:1

二级参考文献19

共引文献23

同被引文献74

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部