期刊文献+

基于中文微博的产品评价分类算法

Product evaluation and classification algorithm based on Chinese micro blog
下载PDF
导出
摘要 在中文微博产品评价分类算法中,由于常规SVM分类器在对少量标记数据的样本进行训练时,泛化能力无法满足要求,无法直接应用于微博文本的数据挖掘中,而传统的半监督TSVM算法的改造是通过对未标记数据增加惩罚函数完成的,这样会产生非凸函数优化问题。因此该文研究一种半监督高斯混合模型核的支持向量机分类算法。使用高斯混合模型对已标记和未标记数据进行训练,求取概率分布。最后通过一个对于i Phone手机的评价实例进行分析,验证了该文研究方法的优势。 The evaluation and classification algorithm of Chinese microblog products is studied in this paper. Because theconventional support vector machine(SVM)classifier cannot satisfy the requirement of the generalization ability when the sam?ples are trained with a small amount of labeled data,it cannot be directly applied to the data mining of the micro blog text. Andthe improvement of the traditional semi supervised TSVM algorithm is accomplished by increasing the penalty function to the un?labeled data,but this will produce a non convex function optimization problem. Therefore,a semi?supervised kernel SVM classi?fication algorithm based on Gauss mixture model is studied in this paper. The Gauss mixture model is used to train labeled andunlabeled data to obtain the probability distribution. SVM classification algorithm can make use of the clustering informationwith unlabeled data as far as possible. Finally,the advantages of this research method are verified by analyzing an example ofevaluation for iPhone mobile phone.
作者 张燕 ZHANG Yan(College of Educational Science,Xinjiang Normal University,Urumqi 830017,China)
出处 《现代电子技术》 北大核心 2016年第14期77-79,83,共4页 Modern Electronics Technique
基金 国家自然科学基金地区科学基金项目(41561100) 新疆维吾尔自治区社会科学基金一般资助项目(14BGL041)
关键词 微博 产品评价 数据挖掘 支持向量机 半监督学习 microblog product evaluation data mining support vector machine semi.supervised learning
  • 相关文献

参考文献14

  • 1张学超..基于中文微博的产品评价分类及推荐算法研究[D].大连理工大学,2014:
  • 2万丹琳..基于中文微博的用户倾向挖掘与分析[D].北京邮电大学,2014:
  • 3田耕..基于关系和内容的推荐算法研究[D].北京交通大学,2015:
  • 4杨东辉..基于情感相似度的社会化推荐系统研究[D].哈尔滨工业大学,2014:
  • 5纪雪梅..特定事件情境下中文微博用户情感挖掘与传播研究[D].南开大学,2014:
  • 6杜爱玲..基于混合推荐算法的微博网络广告推荐研究[D].中国海洋大学,2014:
  • 7刘楠..面向微博短文本的情感分析研究[D].武汉大学,2013:
  • 8温源..互联网文本信息挖掘与个性化推荐的研究[D].北京交通大学,2014:
  • 9刘红玉..网络舆情情感分析系统的设计与实现[D].电子科技大学,2013:
  • 10康浩..微博文本情感分类方法与应用研究[D].国防科学技术大学,2012:

二级参考文献28

  • 1全勇,杨杰.Geodesic Distance for Support Vector Machines[J].自动化学报,2005,31(2):202-208. 被引量:4
  • 2Chapelle O, Sindhwani V, Keerthi S S. Optimization techniques for semi-supervised support vector machines[J].The Journal of Machine Learning Research, 2008, 9(2): 203-233. 被引量:1
  • 3Sindhwani V, Niyogi P, Belkin M. Beyond the point cloud: From transductive to semi-supervised leaming[C]//Proceedings of the 22nd International Conference on Machine Learning. New York, NJ, USA: ACM, 2005: 825-832. 被引量:1
  • 4Belkin M, Niyogi P, Sindhwani V, et al. Manifold regulariza- tion: A geometric framework for learning from examples[J]. Machine Learning Research, 2006, 7(2): 2399-2434. 被引量:1
  • 5Bai S H, Huang C L, Ma B, et al. Semi-supervised learning of language model using unsupervised topic model[C]//IEEE In- ternational Conference on Acoustics, Speech, and Signal Pro- cessing. Piscataway, NJ, USA: IEEE, 2010: 5386-5389. 被引量:1
  • 6Kato T, Kashima H, Sugiyama M. Robust label propagation on multiple networks[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 35-44. 被引量:1
  • 7Kang F, Jin R, Sukthankar R. Correlated label propagation with application to multi-label learning[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2006: 1719-1726. 被引量:1
  • 8Wang F, Zhang C. Label propagation through linear neighbor- hoods[J]. IEEE Transactions on Knowledge and Data Engineer- ing, 2008, 20(1): 55-67. 被引量:1
  • 9Wang J, S. Chang F, Zhou X, et al. Active microscopic cellu- lar image annotation by superposable graph transduction with imbalanced labels[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2008: 8-12. 被引量:1
  • 10Zhu X J, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions[C]//Proceedings of the Twentieth International Conference on Machine Learn- ing. San Francisco, CA, USA: AAAI, 2003: 912-919. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部