期刊文献+

基于机器视觉的圈养豪猪检测与基本行为识别方法研究 被引量:6

Video Monitoring Behaviors of Captive-farmed Porcupines
下载PDF
导出
摘要 为了更好地了解豪猪的习性,提高豪猪人工养殖技术水平,本文设计了基于一种视频图像分析的圈养豪猪检测及基本行为识别方案。首先通过混合高斯模型背景建模法,对圈养豪猪养殖环境进行背景建模,标记出场景中的豪猪及其他运动物体轮廓,采用分类算法对识别出的轮廓进行分类,对豪猪的识别准确率达到86.34%;为了进一步提高准确率,引入图像局部特征ORB关键点作为分类属性,使豪猪的识别准确率提升到93.23%;在此基础上,以饲养池结构及豪猪活动实际情况为判断依据建立圈养豪猪行为识别模型,实现了对豪猪静息、进食、饮水、排泄、啃咬铁门及水槽等7种基本行为的识别。 To understand the living habits for remotely managing the breeding of captive-farmed porcupines,this study applied video to monitor and establish a recognition model with the aid of computation for the behaviors of the animals.Firstly,the mixed Gaussian background modeling was used to build a movement contour model of the porcupines in the pan.Using 3 chosen classifiers,the marked scenes of porcupine activities were categorized with an accuracy of 86.34%.Subsequently,ORB key points were introduced as an additional attribute for the classification which raised the accuracy to 93.23%.The resulting model could now recognize 7 basic behaviors,including resting,eating,drinking,excretion,and chewing an iron gate or a water trough,of porcupines in captivity.
作者 杨威 俞守华
出处 《福建农业学报》 CAS 北大核心 2017年第9期1021-1025,共5页 Fujian Journal of Agricultural Sciences
基金 广东省科技计划项目(2012A020602043)
关键词 圈养豪猪 混合高斯模型 背景建模 ORB特征点检测 支持向量机 决策树 captive-farmed porcupine mixed gaussian model background modeling ORB detection support vector machines data mining
  • 相关文献

参考文献10

二级参考文献136

共引文献134

同被引文献66

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部