期刊文献+

基于视频追踪的猪只运动快速检测方法 被引量:20

Fast Motion Detection for Pigs Based on Video Tracking
下载PDF
导出
摘要 自然条件下猪只日常运动时间、距离、速度等构成的运动数据,可作为猪只健康与舒适度状况分析的重要依据。为快速准确地捕获及检测猪场猪只的各种运动信息,探讨了基于视频追踪的猪只运动信息检测方法,该方法在基于颜色特征与轮廓特征相结合的多猪只目标分割基础上,通过基于最小化代价函数的椭圆拟合和最短距离匹配的目标跟踪,设计了运动位移、运动速度、运动加速度和运动角速度4个运动信息的检测算法。进一步探索了基于运动信息检测猪只日常活跃状态、活动规律及行为识别方面的初步应用。试验结果表明,该算法能够识别多种颜色的纯色猪只;分割粘连猪只成功率达92.6%;通过连续4 d在广州市力智猪场种猪室实时视频测试表明,猪只日常活跃状态、活动规律和行为类别等信息均可通过猪只运动信息表现出来。所提方案可快速、有效检测猪只运动信息,为猪只行为分析、健康与舒适度评估提供了依据。 Pigs' motion data,such as daily motion duration,distance,speed,etc.,are important bases for analysis of pigs' health and performance. Manual monitoring is real-timely difficult,low accuracy,time-consuming and also easy missing for human fatigue. It can not meet the requirement of large-scale farming. Comparing with RFID( radio frequency identification technology) and sensor technology,video technology for development of animal husbandry had a profound influence without physical contact with animals. It was low cost with simple hardware deployment,which can monitor and manage large-scale farms. A scheme for pigs' motion detection was designed based on video tracking for capturing and detecting a variety of motion information of farm pigs quickly and accurately. Firstly,color channel was selected adaptively to identify field pigs. A target segment method was provided based on characteristics of color and contour. Then each pig was fitted by an ellipse based on minimizing the cost function and tracks of pigs based on the shortest distance matching algorithm. Extraction algorithm for four motion parameters was proposed,which were displacement,velocity,acceleration and angular velocity. Finally,experiments related pigs' motion detection,such as pigs' daily activity,daily activity patterns and pigs daily behavior recognition,were carried out. Experimental results showed that the proposed channel selection method could identify a variety of solid colors pigs; the success rate of adhered pigs 'segmentation was 92. 6%. The real-time video in Guangzhou Lizhi male pig farms was tested fromNovember 21,2015 to November 24,2015 from 09: 00 to 17: 00. It showed that the characteristics of pigs daily activity,daily activity patterns and pigs daily behavior recognition could be manifested by the motion information. Therefore,this scheme was effective for pigs' motion detection dynamically,and it provided a basic support for pigs' health,behavior analysis and performance analysis.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2016年第10期351-357,331,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 广东省科技计划项目(2015A020209149 2015A020224042) NSFC-广东联合基金(第二期)超级计算科学应用研究专项
关键词 视频追踪 运动检测 行为分类 pigs video tracking motion checking behavior classification
  • 相关文献

参考文献18

二级参考文献299

  • 1荆丰伟,刘冀伟,王淑盛.改进的K-均值算法在岩相识别中的应用[J].微计算机信息,2004,20(7):41-42. 被引量:5
  • 2魏学良,张家骅,王豪举,晏梅,孙凤清,杨铭惠,尹思明.高温环境对奶牛生理活动及生产性能的影响[J].中国农学通报,2005,21(5):13-15. 被引量:75
  • 3Rebecca N Handcock,Dave L Swain,Greg J,et al.Monitoring animal behaviour and environmental interactions using wireless sensor networks,GPS collars and satellite remote sensing[J].Sensors,2009,9(5):3586-3603. 被引量:1
  • 4Watanabe T,Sakurai A,Kitazaki K.Dairy cattle monitoring using wireless acceleration-sensor networks[C]// Proceedings of IEEE Sensors,Lecce:[s.n.],2008:526-529. 被引量:1
  • 5Guo Y,Corke P,Poulton G,et al.Animal behaviour understanding using wireless sensor networks[C]//Local Computer Networks,Proceedings 2006 31st IEEE conference on,Tampa,FL,2006:607-614. 被引量:1
  • 6Nadimi E S,Sogaard H T,Bak T.ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees[J].Biosystems engineering,2008,100(2):167-176. 被引量:1
  • 7Wark T,Swain D,Crossman C,et al.Sensor and actuator networks:protecting environmentally sensitive areas[J].IEEE Pervasive Computing,2009,8(1):30-36. 被引量:1
  • 8Kwong K H,Goh H G,Craig Michie,et al.Wireless sensor networks for beef and dairy herd management[C]// Michigan:American Society of Agricultural and Biological Engineers Annual International Meeting,St.Joseph:[s.n.],2008:5623-5636. 被引量:1
  • 9Kwong K H,Tsung Ta Wu,Hock Guan Goh,et al.Wireless sensor networks in agriculture:Cattle monitoring for farming industries[C]//Progress In Electromagnetics Research Symposium,Beijing:[s.n.],2009:1719-1723. 被引量:1
  • 10Steve Warren,Angel Martinez,Timothy Sobering,et al.Electrocardiographic pill for cattle heart rate determination[C]//30th Annual International IEEE EMBS Conference Vancouver,British Columbia,Canada:[s.n.],2008:4852-4855. 被引量:1

共引文献632

同被引文献235

引证文献20

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部