期刊文献+

热处理升温快慢对非晶硅中形成的纳米硅粒尺寸的影响 被引量:6

Effect of Temperature-rising-rate on the Sizes of Nanoscale Silicon Particles Formed in Thermally Annealed a-Si:H Films
下载PDF
导出
摘要 含氢非晶硅薄膜经过快速热退火处理后,我们用拉曼散射和X-射线衍射技术对样品进行分析.我们的实验结果表明:在非晶硅薄膜中形成的纳米硅晶粒的大小随着热退火过程中升温快慢而变化.在升温过程中,当单位时间内温度变化量较大时(~100℃/s),则所形成纳米硅粒较小(~1.6~15nm);若单位时间内温度变化量较低(~1℃/s),则纳米硅粒较大(~23~46nm)。根据分形生长理论和计算机模拟,我们讨论了升温快慢与所形成的纳米硅颗粒大小的关系. In this report, we have studied the effect of temperature-rising-rate on the sizes of nanoscale silicon particles formed in thermally annealed hydrogenated amorphous silicon (a-Si:H) films. The a-Si:H films were prepared with electron-beam evaporation in a high-vacuum chamber, then the films were thermally annealed in a furnace at the equilibrium temperature of 620 C for about 10 seconds but with a high (-100 ℃/min) and a low (-1 ℃/min) temperature-rising-rate in the first stage of their thermal annealing processes, respectively. Using the micro-Raman scattering and the X-ray diffraction techniques, we have found that sizes of the formed silicon particles change with the temperature-rising-rate in the process of thermal annealing the a-Si:H films. When the a-Si:H films have been annealed with high temperature-rising-rate (-100 ℃/s), the sizes of nanoscale silicon particles are small in the range of 1.6-15 nm. In the meanwhile, if the a-Si:H films are annealed with a low temperature-rising-rate (-1 ℃/second), the sizes of nanoscale silicon particles are large in the range of 23-46 nm. Using the method of diffusion limited aggregation, we have simulated the growth of nanoscale silicon particles in a-Si:H films and discussed the effect of temperature-rising-rate on the sizes of the formed silicon particles.
作者 薛清 黄远明
出处 《量子电子学报》 CAS CSCD 北大核心 2002年第5期461-466,共6页 Chinese Journal of Quantum Electronics
关键词 纳米硅 拉曼散射 快速热退火 X-射线衍射 非晶硅薄膜 nano-crystalline silicon Raman scattering rapid thermal annealing X-ray diffraction
  • 相关文献

参考文献18

  • 1Canham L T. Silicon quantum wirearray fabricated by electrochemical and chemical dissolution of wafers [J]. Appl.Phys.Lett., 1990, 57 (10):1046-1048 被引量:1
  • 2Li B, Yu D, Zhang S L. Raman spectral study of silicon nanowires [J]. Phys. Rev. B,1999, 59(3): 1645-1648 被引量:1
  • 3Zi J, Biischer H, Falter C et al. Raman shifts in Si nanocrystals [J]. Appl. Phys.Lett., 1996, 59(2): 200-202 被引量:1
  • 4Huang Y M. Laser light scattering characterization of particle size distribution inporous silicon [J]. Solid State Commun., 1996, 67(1): 33-37 被引量:1
  • 5Huang Y M. Photoluminescence of copper-doped porous silicon [J]. Appl. Phys. Lett.,1996, 69(19): 2855-2857 被引量:1
  • 6Huang Y M. Positron irradiation: A technique for modifying the photoluminescentstructures of porous silicon [J].Appl. Phys. Lett., 1997, 71(12): 3850-3852 被引量:1
  • 7Huang Y M, Zhai B G. Fourier transform infrared study on porous silicon dipped intoCr3+ solution [J]. J. Vac.Sci. Technol (J)., 1997, 15(6): 1899-1901 被引量:1
  • 8Mizuno H, Koyama H, Koshida N. Oxide-free blue photoluminescence fromphotochemically etched porous silicon [J]. Appl. Phys. Lett., 1996, 69(25): 3779-3781 被引量:1
  • 9Sunkara M K, Sharma S, Miranda R et al. Bulk synthesis of silicon nanowires using alow-temperature vaporliquid-solid method [J]. Appl. Phys. Lett., 2001, 79(10): 1546-1548 被引量:1
  • 10Valenta J, Juhasz R, Linnros J. Photoluminescence spectroscopy of single siliconquantum dots [J]. Appl. Phys.Lett., 2002, 80(6): 1070-1072 被引量:1

二级参考文献9

  • 1Huang Y M,Solid State Commun,1996年,97卷,1期,33页 被引量:1
  • 2Cheng G X,Phys Statue Solid A,1990年,118卷,1期,K51页 被引量:1
  • 3Cheng H C,Jpn J Appl Phys AB,2000年,39卷,1期,L19页 被引量:1
  • 4Park C D,Thin Solid Films,2000年,359卷,2期,268页 被引量:1
  • 5Xia J B,Phys Rev.B,1999年,59卷,23期,14876页 被引量:1
  • 6Huang Y M,Appl Phys Lett,1997年,71卷,26期,3850页 被引量:1
  • 7Huang Y M,J Vac Sci Technol B,1997年,15卷,6期,1899页 被引量:1
  • 8Ma S K,Thin Solid Films,1997年,304卷,1/2期,353页 被引量:1
  • 9Huang Y M,Appl Phys Lett,1996年,69卷,19期,2855页 被引量:1

共引文献5

同被引文献33

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部