期刊文献+

关于AM学习样本选择的实验研究 被引量:1

EXPERIMENT ON CHOOSING THE TRAINING SAMPLES FOR AM
原文传递
导出
摘要 本文针对联想记忆网络学习样本的选择问题,从网络的泛化能力入手,讨论了学习样本的数量、质量和选取方法问题.并通过一个交通标志形状识别系统的实验,给出了如何确定联想记忆网络学习样本的数量、质量和选取方法的建议. To solve the problem of how to select training samples for associative memory (AM) neural networks, the number and quality of training samples and the way to choose them are discussed in this paper, according to the generalization capability of neural networks, a suggestion is given to define the number and quality of samples of AMNN and the way to choose them, according to an experiment of a traffic sign shape recognition system.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2002年第3期367-371,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60175011) 安徽省自然科学基金(No.01042301) 教育部优秀青年资助计划
关键词 联想记忆 学习样本 泛化能力 识别 聚类 AM 神经网络理论 Associative Memory(AM), Training Sample, Generalization Capability, Recognition, Clustering
  • 相关文献

参考文献9

二级参考文献22

共引文献180

同被引文献11

  • 1徐杰,施鹏飞.图像检索中基于标记与未标记样本的主动学习算法[J].上海交通大学学报,2004,38(12):2068-2072. 被引量:7
  • 2Tong S, Koller D. Support vector machine active learning with applications to text classifications to text classification[J].Machine Learning Research, 2001, 2 : 45-66. 被引量:1
  • 3Simon H A, Lea G. Problem solving and rule reduction: a unified view[J]. Knowledge and Cognition. Erbuam 1974, 15(2): 63-73. 被引量:1
  • 4Lewis D D, Gale W A. A sequential algorithm for training text classifiers[C]// Proceedings of the Annual Int'l ACM-SIGIR Conference on Research and Development in Information Retrival SIGIR 94. London: Springer Verlag, 1994: 3-12. 被引量:1
  • 5Tong S, Koller D. Support vector machine active learning with applications to text classifications to text classification[J].Machine Learning Research,2001, 2 : 45-66. 被引量:1
  • 6Vapnik V N.统计学习理论本质[M].张学工,译.北京:清华大学出版社,2000. 被引量:4
  • 7Simpson P K. Fuzzy min-max neural networks-Part 1: classification[J].IEEE Transactions on Neural Networks, 1992,3(5): 766-786. 被引量:1
  • 8Li M, Sethi I K. Confidence-based active learning[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 28(8): 1251-1261. 被引量:1
  • 9Li M. Confidence-based classifer design and its applications[D]. Ph D Dissertation, Oakland Univ, 2005. 被引量:1
  • 10Li M, Sethi I K. Confidence-based classifer design[J]. Pattern Recognition, 2006, 39(7): 1230-1240. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部