摘要
针对属性值为直觉梯形模糊数,决策者间和属性间存在相互关联的多属性群决策问题,引入模糊测度和Choquet积分的概念,在直觉梯形模糊数的运算法则基础上构建了诱导型广义直觉梯形模糊choquet积分平均(IGITFCA)算子和诱导型广义直觉梯形模糊choquet积分几何(IG-ITFCG)算子,探讨上述算子的若干性质及一些特例,进而提出了基于诱导型广义直觉梯形模糊Choquet积分算子和多准则妥协优化解(VIKOR)的直觉梯形模糊多属性群决策方法。实例分析验证该方法的有效性和合理性。
With regard to multi-attribute group decision making problem with conflicting attributes and interdependent subjective preference of decision makers in a fuzzy environment where preferences of decision makers with respect to attributes are represented by intuitionistic trapezoidal fuzzy numbers,are investigated.Combing the definition of fuzzy measure and induced aggregation operator,some new aggregation operators based on Choquet integral are proposed,such as induced generalized intuitionistic trapezoidal fuzzy Choquet integral average(IG-ITFCA)operator and induced generalized intuitionistic trapezoidal fuzzy Choquet integral geometric(IG-ITFCG)operator,some desirable properties of these aggregation operators are investigated in detail.The extended VIKOR decision procedure based on the proposed operator is developed for solving the multi-attribute group decision making problem where the interactive attributes weight is measured by Shapley value.An illustrative example is given for demonstrating the applicability of the proposed decision procedure for solving the multi-attribute group decision making problem in intuitionistic trapezoidal fuzzy environment.
出处
《中国管理科学》
CSSCI
北大核心
2016年第6期132-142,共11页
Chinese Journal of Management Science
基金
国家自然科学基金面上重点资助项目(71331002)
国家自然科学基金资助面上项目(71271072)
教育部高等学校博士点基金资助项目(20110111110006)
中央高校基本科研业务费专项资金资助项目(JZ2015HGBZ0468)
关键词
直觉梯形模糊数
Choquet积分算子
关联
多准则妥协优化解
群决策
group decision making
intuitionistic trapezoidal fuzzy number
Choquet integral
interaction
aggregation operators
VIKOR